Review Article| Volume 20, ISSUE 2, P213-223, April 2004

Tissue oxygen delivery and the microcirculation

      Cellular health requires that oxygen (O2) supply be matched appropriately with the tissues O2 needs. If O2 supply is not aligned with needs, ischemia will supervene, and tissue injury results. The cellular delivery of O2 is a finely regulated system. Once having passed the alveolar–capillary membrane, O2 is carried in blood to the tissues. According to the formula: O2 content (CaO2) = [(hemoglobin concentration) × saturation of O2 (SaO2) × 1.39 + 0.003 × arterial O2 tension (PaO2)], most of the O2 transported in blood is bound to red cell hemoglobin, and the amount of physically dissolved O2 is negligible under physiologic conditions. Whole body oxygenation is determined by the CaO2, cardiac output, and O2 extraction ratio. The total amount of convective O2 delivered to the organs (DO2) then is calculated as: DO2 = cardiac output × CaO2.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Morisaki H
        • Sibbald W
        • Martin C
        • Doig G
        • Inman K
        Hyperdynamic sepsis depresses circulatory compensation to normovolemic anemia in conscious rats.
        J Appl Physiol. 1996; 80: 656-664
        • Hébert P.C
        • Wells G
        • Blajchman M
        • Marshall J
        • Martin C
        • Pagliarello G
        • et al.
        A multicenter, randomized controlled clinical trial of transfusion requirements in critical care.
        N Engl J Med. 1999; 340: 409-417
        • Sum D
        • Huang A
        • Koller A
        • Kaley G
        Flow-dependent dilation and myogenic constriction interest to establish the resistance of skeletal muscle arterioles.
        Microcirculation. 1995; 2: 289-295
        • Ngai A.C
        • Winn H.R
        Modulation of cerebral arteriolar diameter by intraluminal flow and pressure.
        Circ Res. 1995; 77: 832-840
        • Harder D.R
        • Narayanan J
        • Birks E.K
        • Liard J.F
        • Imig J.D
        • Lombard J.H
        • et al.
        Identification of a putative microvascular oxygen sensor.
        Circ Res. 1996; 79: 54-61
        • Jackson W.F
        Arteriolar oxygen reactivity: where is the sensor?.
        Am J Physiol. 1987; 253: H1120-H1126
        • Ellsworth M.L
        • Forrester C.G
        • Ellis C.G
        • Dietrich H.H
        The erythrocyte as a regulator of vascular tone.
        Am J Physiol. 1995; 269: H2155-H2161
        • Martin C.M
        • Yaghi A
        • Sibbald W.J
        • McCormack D
        • Paterson N.A.M
        Differential impairment of vascular reactivity of small pulmonary and systemic arteries in a rat model of hyperdynamic sepsis.
        Am Rev Respir Dis. 1993; 148: 164-172
        • Bersten A.D
        • Sibbald W
        Circulatory disturbances in multiple system organ failure.
        Crit Care Clin. 1989; 5: 233-254
        • Piper R.D
        • Li F.Y
        • Myers M.L
        • Sibbald W.J
        Structure-function relationships in the septic rat heart.
        Am J Respir Crit Care Med. 1997; 156: 1473-1482
        • Varela F.E
        • Pope A.S
        Effect of intracapillary resistance to oxygen transport on the diffusional shunting between capillaries.
        J Biomed Eng. 1998; 10: 400-405
        • Duling B.R
        • Berne R.M
        Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow.
        Circ Res. 1970; 27: 669-678
        • Ellsworth M.L
        • Ellis C.G
        • Popel A.S
        • Pittman R.N
        Role of microvessels in oxygen supply to tissue.
        News Physiol Sci. 1994; 9: 119-123
        • Pries A.R
        • Ley K
        • Classen M
        • Gaethgens P
        Red cell distribution at microvascular bifurcations.
        Microvasc Res. 1989; 38: 81-101
        • Morita Y
        • Chin-Yee I
        • Sibbald W.J
        • Martin C.M
        Critical oxygen delivery in conscious septic rats under stagnant or anemic hypoxia.
        Am J Respir Crit Care Med. 2003; 167: 868-872
        • Tenny S.M
        A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures.
        Respir Physiol. 1974; 20: 283-296
        • Nelson D.P
        • Samsel R.W
        • Wood L.D.H
        • Schumacker P.T
        Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia.
        J Appl Physiol. 1988; 64: 2410-2419
        • Lam C
        • Tyml K
        • Martin C
        • Sibbald W
        Microvascular perfusion is impaired in a rat model of normotensive sepsis.
        J Clin Invest. 1994; 94: 2077-2083
        • Morisaki H
        • Bloos F
        • Keys J
        • Martin C
        • Neal A
        • Sibbald W.J
        Compared with crystalloid, colloid therapy slows progression of extrapulmonary tissue injury in septic sheep.
        J Appl Physiol. 1994; 77: 1507-1518
        • Astiz M.E
        • DeGent G.E
        • Lin R.Y
        • Rackow E.C
        Microvascular function and rheologic changes in hyperdynamic sepsis.
        Crit Care Med. 1995; 23: 265-271
        • Kirschenbaum L.A
        • Aziz M
        • Astiz M.E
        • Saha D.C
        • Rackow E.C
        Influence of rheologic changes and platelet-neutrophil interactions on cell filtration in sepsis.
        Am J Respir Crit Care Med. 2000; 161: 1602-1607
        • Yodice P.C
        • Astiz M.E
        • Kurian B.M
        • Lin R.Y
        • Rackow E.C
        Neutrophil rheologic changes in septic shock.
        Am J Respir Crit Care Med. 1997; 155: 38-42
        • Baskurt O.K
        • Gelmont D
        • Meiselman H.J
        Red blood cell deformability in sepsis.
        Am J Respir Crit Care Med. 1998; 157: 421-427
        • Eichelbönner O
        • Sielenkämper A
        • Cepinskas G
        • Sibbald W.J
        • Chin-Yee I.H
        Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow.
        Crit Care Med. 2000; 28: 1865-1870
        • ten Cate H
        Pathophysiology of disseminated intravascular coagulation in sepsis.
        Crit Care Med. 2000; 28: S9-S11
        • Morisaki H
        • Katayama T
        • Kotake Y
        • Ito M
        • Handa M
        • Ikeda Y
        • et al.
        Carbon monoxide modulates endotoxin-induced microvascular leukocyte adhesion through platelet-dependent mechanisms.
        Anesthesiology. 2002; 97: 701-709
        • Fitzgerald R.D
        • Martin C.M
        • Dietz G.E
        • Doig G.S
        • Potter R.F
        • Sibbald W.J
        Transfusing red blood cells stored in citrate phosphate dextrose adnine-1 for 28 days fails to improve tissue oxygenation in rats.
        Crit Care Med. 1997; 25: 726-732
        • Marik P
        • Sibbald W.J
        Effect of stored-blood transfusion on oxygen delivery in patients with sepsis.
        JAMA. 1993; 269: 3024-3029
        • Sielenkämper A.W
        • Yu P
        • Eichelbrönner O
        • MacDonald T
        • Martin C.M
        • Chin-Yee I.H
        • et al.
        Diaspirin cross-linked Hb and norepinephrine prevent the sepsis-induced increase in critical O2 delivery.
        Am J Physiol Heart Circ Physiol. 2000; 279: H1922-H1930