Advertisement

Unmasked Adult-Onset Urea Cycle Disorders in the Critical Care Setting

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Batshaw M.L.
        • Monahan P.S.
        Treatment of urea cycle disorders.
        Enzyme. 1987; 38: 242-250
        • Jackson M.J.
        • Beaudet A.L.
        • O'Brien W.E.
        Mammalian urea cycle enzymes.
        Annu Rev Genet. 1986; 20: 431-464
        • Walter J.H.
        • Leonard J.V.
        Inborn errors of the urea cycle.
        Br J Hosp Med. 1987; 38: 176-183
        • Brusilow S.W.
        Disorders of the urea cycle.
        Hosp Pract. 1985; 20: 65-72
        • Batshaw M.L.
        Inborn errors of urea synthesis.
        Ann Neurol. 1994; 35: 133-141
        • Batshaw M.L.
        Hyperammonemia.
        Curr Probl Pediatr. 1984; 14: 1-69
        • Brusilow S.W.
        • Maestri N.E.
        Urea cycle disorders: diagnosis, pathophysiology, and therapy.
        Adv Pediatr. 1996; 43: 127-170
        • Summar M.
        Current strategies for the management of neonatal urea cycle disorders.
        J Pediatr. 2001; 138: S30-S39
        • Batshaw M.L.
        • Brusilow S.W.
        Valproate-induced hyperammonemia.
        Ann Neurol. 1982; 11: 319-321
        • Coulter D.L.
        • Allen R.J.
        Secondary hyperammonemia: a possible mechanism for valproate encephalopathy.
        Lancet. 1980; 1: 1310-1311
        • Eadie M.
        • Hooper W.
        • Dietz H.C.
        Valproate-associated hepatotoxicity and its biochemical mechanisms.
        Med Toxicol Adverse Drug Exp. 1988; 3: 85-106
        • Laub M.C.
        [Hyperammonemia in valproate therapy in children and adolescents].
        Nervenarzt. 1986; 57 ([German]): 314-318
        • Bourrier P.
        • Varache N.
        • Alquier P.
        • et al.
        [Cerebral edema with hyperammonemia in valpromide poisoning. Manifestation in an adult, of a partial deficit in type I carbamylphosphate synthetase].
        Presse Med. 1988; 17 ([French]): 2063-2066
        • Castro-Gago M.
        • Rodrigo-Saez E.
        • Novo-Rodriguez I.
        • et al.
        Hyperaminoacidemia in epileptic children treated with valproic acid.
        Childs Nerv Syst. 1990; 6: 434-436
        • Elgudin L.
        • Hall Y.
        • Schubert D.
        Ammonia induced encephalopathy from valproic acid in a bipolar patient: case report.
        Int J Psychiatry Med. 2003; 33: 91-96
        • Honeycutt D.
        • Callahan K.
        • Rutledge L.
        • et al.
        Heterozygote ornithine transcarbamylase deficiency presenting as symptomatic hyperammonemia during initiation of valproate therapy.
        Neurology. 1992; 42: 666-668
        • Iinuma K.
        • Hayasaka K.
        • Narisawa K.
        • et al.
        Hyperamino-acidaemia and hyperammonemia in epileptic children treated with valproic acid.
        Eur J Pediatr. 1988; 148: 267-269
        • Vainstein G.
        • Korzets Z.
        • Pomeranz A.
        • et al.
        Deepening coma in an epileptic patient: the missing link to the urea cycle. Hyperammonaemic metabolic encephalopathy.
        Nephrol Dial Transplant. 2002; 17: 1351-1353
        • Verbiest H.B.
        • Straver J.S.
        • Colombo J.P.
        • et al.
        Carbamyl phosphate synthetase-1 deficiency discovered after valproic acid-induced coma.
        Acta Neurol Scand. 1992; 86: 275-279
        • Williams C.A.
        • Tiefenbach S.
        • McReynolds J.W.
        Valproic acid-induced hyperammonemia in mentally retarded adults.
        Neurology. 1984; 34: 550-553
        • Wong L.J.
        • Craigen W.J.
        • O'Brien W.E.
        Postpartum coma and death due to carbamoyl-phosphate synthetase I deficiency.
        Ann Intern Med. 1994; 120: 216-217
        • Yokoyama K.
        • Ogura Y.
        • Kawabata M.
        • et al.
        Hyperammonemia in a patient with short bowel syndrome and chronic renal failure.
        Nephron. 1996; 72: 693-695
        • Benque A.
        • Bommelaer G.
        • Rozental G.
        • et al.
        Chronic vomiting in a case of citrullinaemia detected after treatment by total parenteral nutrition.
        Gut. 1984; 25: 531-533
        • Felig D.M.
        • Brusilow S.W.
        • Boyer J.L.
        Hyperammonemic coma due to parenteral nutrition in a woman with heterozygous ornithine transcarbamylase deficiency.
        Gastroenterology. 1995; 109: 282-284
        • Trivedi M.
        • Zafar S.
        • Spalding M.J.
        • et al.
        Ornithine transcarbamylase deficiency unmasked because of gastrointestinal bleeding.
        J Clin Gastroenterol. 2001; 32: 340-343
        • Mitchell R.B.
        • Wagner J.E.
        • Karp J.E.
        • et al.
        Syndrome of idiopathic hyperammonemia after high-dose chemotherapy: review of nine cases.
        Am J Med. 1988; 85: 662-667
        • Davies S.M.
        • Szabo E.
        • Wagner J.E.
        • et al.
        Idiopathic hyperammonemia: a frequently lethal complication of bone marrow transplantation.
        Bone Marrow Transplant. 1996; 17: 1119-1125
        • Tse N.
        • Cederbaum S.
        • Glaspy J.A.
        Hyperammonemia following allogeneic bone marrow transplantation.
        Am J Hematol. 1991; 38: 140-141
        • Maier K.P.
        • Talke H.
        • Heimsoeth H.
        • et al.
        Influence of steroids on urea-cycle enzymes in chronic human liver disease.
        Klin Wochenschr. 1978; 56: 291-295
        • Coude F.X.
        • Grimber G.
        • Parvy P.
        • et al.
        Inhibition of ureagenesis by valproate in rat hepatocytes: role of N-acetylglutamate and acetyl-CoA.
        Biochem J. 1983; 216: 233-236
        • Kamoun P.
        • Rabier D.
        Valproate-induced inhibition of urea synthesis.
        Lancet. 1987; 1: 48
        • Summar M.L.
        • Hall L.
        • Christman B.
        • et al.
        Environmentally determined genetic expression: clinical correlates with molecular variants of carbamyl phosphate synthetase I.
        Mol Genet Metab. 2004; 81: S12-S19
        • Kallianpur A.R.
        • Hall L.D.
        • Yadav M.
        • et al.
        Increased prevalence of the HFE C282Y hemochromatosis allele in women with breast cancer.
        Cancer Epidemiol Biomarkers Prev. 2004; 13: 205-212
        • Batshaw M.L.
        Sodium benzoate and arginine: alternative pathway therapy in inborn errors of urea synthesis.
        Prog Clin Biol Res. 1983; 127: 69-83
        • Batshaw M.L.
        • Brusilow S.W.
        Evidence of lack of toxicity of sodium phenylacetate and sodium benzoate in treating urea cycle enzymopathies.
        J Inherit Metab Dis. 1981; 4: 231
        • Batshaw M.L.
        • Brusilow S.W.
        Treatment of hyperammonemic coma caused by inborn errors of urea synthesis.
        J Pediatr. 1980; 97: 893-900
        • Brusilow S.W.
        • Valle D.L.
        • Batshaw M.
        New pathways of nitrogen excretion in inborn errors of urea synthesis.
        Lancet. 1979; 2: 452-454
        • Brusilow S.W.
        Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion.
        Pediatr Res. 1991; 29: 147-150
        • Butterworth R.F.
        Effects of hyperammonaemia on brain function.
        J Inherit Metab Dis. 1998; 21: 6-20
        • Connelly A.
        • Cross J.H.
        • Gadian D.G.
        • et al.
        Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency.
        Pediatric Research. 1993; 33: 77-81
        • Willard-Mack C.L.
        • Koehler R.C.
        • Hirata T.
        • et al.
        Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat.
        Neuroscience. 1996; 71: 589-599
        • Fujiwara M.
        Role of ammonia in the pathogenesis of brain edema.
        Acta Med Okayama. 1986; 40: 313-320
        • Fujiwara M.
        • Watanabe A.
        • Shiota T.
        • et al.
        Hyperammonemia-induced cytotoxic brain edema under osmotic opening of blood-brain barrier in dogs.
        Research Experimental Medicine. 1985; 185: 425-427
        • Saheki T.
        • Kobayashi K.
        • Iijima M.
        • et al.
        Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle.
        Mol Genet Metab. 2004; 81: S20-S26
        • Saheki T.
        • Kobayashi K.
        Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD).
        J Hum Genet. 2002; 47: 333-341