Advertisement
Review Article| Volume 26, ISSUE 2, P255-283, April 2010

Lactic Acidosis: Recognition, Kinetics, and Associated Prognosis

  • Christopher Vernon
    Affiliations
    Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN 67, Portland, OR 97239, USA
    Search for articles by this author
  • Jennifer L. LeTourneau
    Correspondence
    Corresponding author. Pulmonary Disease Section, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Road, Mailcode P3PULM, Portland, OR 97239.
    Affiliations
    Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN 67, Portland, OR 97239, USA

    Pulmonary Disease Section, Portland Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Road, Mailcode P3PULM, Portland, OR 97239, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kompanje E.J.
        • Jansen T.C.
        • van der Hoven B.
        • et al.
        The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843.
        Intensive Care Med. 2007; 33: 1967-1971
        • Fletcher W.M.
        Lactic acid in amphibian muscle.
        J Physiol. 1907; 35: 247-309
        • Huckabee W.E.
        Relationship of pyruvate and lactate during anaerobic metabolism. IV. Local tissue components of total body O2-debt.
        Am J Physiol. 1959; 196: 253-260
        • Huckabee W.E.
        Relationships of pyruvate and lactate during anaerobic metabolism. III. Effect of breathing low-oxygen gases.
        J Clin Invest. 1958; 37: 264-271
        • Huckabee W.E.
        Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O-debt.
        J Clin Invest. 1958; 37: 255-263
        • Huckabee W.E.
        Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation.
        J Clin Invest. 1958; 37: 244-254
        • Huckabee W.E.
        Abnormal resting blood lactate. I. The significance of hyperlactatemia in hospitalized patients.
        Am J Med. 1961; 30: 840-848
        • Woods H.F.
        • Cohen R.
        Clinical and biochemical aspects of lactic acidosis.
        Blackwell Scientific, Oxford1976
        • Gladden L.B.
        Lactate metabolism: a new paradigm for the third millennium.
        J Physiol. 2004; 558: 5-30
        • Philp A.
        • Macdonald A.L.
        • Watt P.W.
        Lactate—a signal coordinating cell and systemic function.
        J Exp Biol. 2005; 208: 4561-4575
        • Levy B.
        Lactate and shock state: the metabolic view.
        Curr Opin Crit Care. 2006; 12: 315-321
        • De Backer D.
        • Creteur J.
        • Zhang H.
        • et al.
        Lactate production by the lungs in acute lung injury.
        Am J Respir Crit Care Med. 1997; 156: 1099-1104
        • Borregaard N.
        • Herlin T.
        Energy metabolism of human neutrophils during phagocytosis.
        J Clin Invest. 1982; 70: 550-557
        • Mizock B.A.
        Hyperlactatemia in acute liver failure: decreased clearance versus increased production.
        Crit Care Med. 2001; 29: 2225-2226
        • De Backer D.
        • Creteur J.
        • Silva E.
        • et al.
        The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis.
        Crit Care Med. 2001; 29: 256-261
        • Levraut J.
        • Ciebiera J.P.
        • Chave S.
        • et al.
        Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction.
        Am J Respir Crit Care Med. 1998; 157: 1021-1026
        • Bellomo R.
        Bench-to-bedside review: lactate and the kidney.
        Crit Care. 2002; 6: 322-326
        • Bihari D.
        • Gimson A.E.
        • Lindridge J.
        • et al.
        Lactic acidosis in fulminant hepatic failure. Some aspects of pathogenesis and prognosis.
        J Hepatol. 1985; 1: 405-416
        • Vary T.C.
        Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate.
        Shock. 1996; 6: 89-94
        • Levy B.
        • Sadoune L.O.
        • Gelot A.M.
        • et al.
        Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock.
        Crit Care Med. 2000; 28: 114-119
        • Revelly J.P.
        • Tappy L.
        • Martinez A.
        • et al.
        Lactate and glucose metabolism in severe sepsis and cardiogenic shock.
        Crit Care Med. 2005; 33: 2235-2240
        • Dellinger R.P.
        • Levy M.M.
        • Carlet J.M.
        • et al.
        Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008.
        Crit Care Med. 2008; 36: 296-327
        • Weil M.H.
        • Afifi A.A.
        Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock).
        Circulation. 1970; 41: 989-1001
        • Cady Jr., L.D.
        • Weil M.H.
        • Afifi A.A.
        • et al.
        Quantitation of severity of critical illness with special reference to blood lactate.
        Crit Care Med. 1973; 1: 75-80
        • Stacpoole P.W.
        • Wright E.C.
        • Baumgartner T.G.
        • et al.
        Natural history and course of acquired lactic acidosis in adults. DCA-Lactic Acidosis Study Group.
        Am J Med. 1994; 97: 47-54
        • Trzeciak S.
        • Dellinger R.P.
        • Chansky M.E.
        • et al.
        Serum lactate as a predictor of mortality in patients with infection.
        Intensive Care Med. 2007; 33: 970-977
        • Shapiro N.I.
        • Howell M.D.
        • Talmor D.
        • et al.
        Serum lactate as a predictor of mortality in emergency department patients with infection.
        Ann Emerg Med. 2005; 45: 524-528
        • Shapiro N.I.
        • Howell M.D.
        • Donnino M.
        • et al.
        Occult hypoperfusion and mortality in patients with suspected infection.
        Intensive Care Med. 2007; 33: 1892-1899
        • Mikkelsen M.E.
        • Miltiades A.N.
        • Gaieski D.F.
        • et al.
        Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock.
        Crit Care Med. 2009; 37: 1670-1677
        • Jansen T.C.
        • van Bommel J.
        • Woodward R.
        • et al.
        Association between blood lactate levels, sequential organ failure assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study.
        Crit Care Med. 2009; 37: 2369-2374
        • Chuang C.K.
        • Wang T.J.
        • Yeung C.Y.
        • et al.
        Interference and blood sample preparation for a pyruvate enzymatic assay.
        Clin Biochem. 2006; 39: 74-77
        • Suistomaa M.
        • Ruokonen E.
        • Kari A.
        • et al.
        Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions.
        Shock. 2000; 14: 8-12
        • Bakker J.
        • Coffernils M.
        • Leon M.
        • et al.
        Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock.
        Chest. 1991; 99: 956-962
        • Bakker J.
        • Gris P.
        • Coffernils M.
        • et al.
        Serial blood lactate levels can predict the development of multiple organ failure following septic shock.
        Am J Surg. 1996; 171: 221-226
        • Abramson D.
        • Scalea T.M.
        • Hitchcock R.
        • et al.
        Lactate clearance and survival following injury.
        J Trauma. 1993; 35 ([discussion: 588–9]): 584-588
        • McNelis J.
        • Marini C.P.
        • Jurkiewicz A.
        • et al.
        Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit.
        Am J Surg. 2001; 182: 481-485
        • Husain F.A.
        • Martin M.J.
        • Mullenix P.S.
        • et al.
        Serum lactate and base deficit as predictors of mortality and morbidity.
        Am J Surg. 2003; 185: 485-491
        • Nguyen H.B.
        • Rivers E.P.
        • Knoblich B.P.
        • et al.
        Early lactate clearance is associated with improved outcome in severe sepsis and septic shock.
        Crit Care Med. 2004; 32: 1637-1642
        • Stacpoole P.W.
        • Nagaraja N.V.
        • Hutson A.D.
        Efficacy of dichloroacetate as a lactate-lowering drug.
        J Clin Pharmacol. 2003; 43: 683-691
        • Stacpoole P.W.
        • Kerr D.S.
        • Barnes C.
        • et al.
        Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children.
        Pediatrics. 2006; 117: 1519-1531
        • Bersin R.M.
        • Stacpoole P.W.
        Dichloroacetate as metabolic therapy for myocardial ischemia and failure.
        Am Heart J. 1997; 134: 841-855
        • Stacpoole P.W.
        • Lorenz A.C.
        • Thomas R.G.
        • et al.
        Dichloroacetate in the treatment of lactic acidosis.
        Ann Intern Med. 1988; 108: 58-63
        • Stacpoole P.W.
        • Wright E.C.
        • Baumgartner T.G.
        • et al.
        A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group.
        N Engl J Med. 1992; 327: 1564-1569
        • Gallagher E.J.
        • Rodriguez K.
        • Touger M.
        Agreement between peripheral venous and arterial lactate levels.
        Ann Emerg Med. 1997; 29: 479-483
        • Lavery R.F.
        • Livingston D.H.
        • Tortella B.J.
        • et al.
        The utility of venous lactate to triage injured patients in the trauma center.
        J Am Coll Surg. 2000; 190: 656-664
        • Marko P.
        • Gabrielli A.
        • Caruso L.J.
        Too much lactate or too little liver?.
        J Clin Anesth. 2004; 16: 389-395
        • Noritomi D.T.
        • Soriano F.G.
        • Kellum J.A.
        • et al.
        Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study.
        Crit Care Med. 2009; 37: 2733-2739
        • Didwania A.
        • Miller J.
        • Kassel D.
        • et al.
        Effect of intravenous lactated Ringer's solution infusion on the circulating lactate concentration: Part 3. Results of a prospective, randomized, double-blind, placebo-controlled trial.
        Crit Care Med. 1997; 25: 1851-1854
        • Warburg O.
        On the origin of cancer cells.
        Science. 1956; 123: 309-314
        • Baysal B.E.
        • Ferrell R.E.
        • Willett-Brozick J.E.
        • et al.
        Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.
        Science. 2000; 287: 848-851
        • Tomlinson I.P.
        • Alam N.A.
        • Rowan A.J.
        • et al.
        Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer.
        Nat Genet. 2002; 30: 406-410
        • Bellance N.
        • Lestienne P.
        • Rossignol R.
        Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis.
        Front Biosci. 2009; 14: 4015-4034
        • Friedenberg A.S.
        • Brandoff D.E.
        • Schiffman F.J.
        Type B lactic acidosis as a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature review.
        Medicine (Baltimore). 2007; 86: 225-232
        • Colombo G.M.
        • Del Vecchio L.R.
        • Sacco T.
        • et al.
        Fatal lactic acidosis due to widespread diffusion of melanoma.
        Minerva Med. 2006; 97: 295
        • Manuel B.
        • Suresh V.
        • Saphwat E.
        Refractory metabolic acidosis in small cell cancer of the lung.
        South Med J. 2006; 99: 782-783
        • Field M.
        • Block J.B.
        • Levin R.
        • et al.
        Significance of blood lactate elevations among patients with acute leukemia and other neoplastic proliferative disorders.
        Am J Med. 1966; 40: 528-547
        • Ustun C.
        • Fall P.
        • Szerlip H.M.
        • et al.
        Multiple myeloma associated with lactic acidosis.
        Leuk Lymphoma. 2002; 43: 2395-2397
        • Kachel R.G.
        Metastatic reticulum cell sarcoma and lactic acidosis.
        Cancer. 1975; 36: 2056-2059
        • Varanasi U.R.
        • Carr B.
        • Simpson D.P.
        Lactic acidosis associated with metastatic breast carcinoma.
        Cancer Treat Rep. 1980; 64: 1283-1285
        • Colman L.K.
        • Baker T.M.
        Lactic acidosis with extensive oat cell carcinoma of the lung–not necessarily a poor prognostic sign: case report.
        Mil Med. 1983; 148: 440
        • Cheng J.C.
        • Esparza S.D.
        • Knez V.M.
        • et al.
        Severe lactic acidosis in a 14-year-old female with metastatic undifferentiated carcinoma of unknown primary.
        J Pediatr Hematol Oncol. 2004; 26: 780-782
        • Wall B.M.
        • Mansour N.
        • Cooke C.R.
        Acute fulminant lactic acidosis complicating metastatic cholangiocarcinoma.
        Am J Med Sci. 2000; 319: 126-129
        • Bischof T.
        • Gunthard H.
        • Straumann E.
        • et al.
        Schweiz Med Wochenschr. 1997; 127 ([in German]): 261-265
        • Sillos E.M.
        • Shenep J.L.
        • Burghen G.A.
        • et al.
        Lactic acidosis: a metabolic complication of hematologic malignancies: case report and review of the literature.
        Cancer. 2001; 92: 2237-2246
        • Coleman R.A.
        • Sommerville H.M.
        • Friedman H.S.
        • et al.
        Insulin therapy for ketolactic acidosis complicating malignancy.
        J Pediatr. 1982; 100: 584-587
        • Fraley D.S.
        • Adler S.
        • Bruns F.J.
        • et al.
        Stimulation of lactate production by administration of bicarbonate in a patient with a solid neoplasm and lactic acidosis.
        N Engl J Med. 1980; 303: 1100-1102
        • Hurtado F.J.
        • Gutierrez A.M.
        • Silva N.
        • et al.
        Role of tissue hypoxia as the mechanism of lactic acidosis during E. coli endotoxemia.
        J Appl Physiol. 1992; 72: 1895-1901
        • Gore D.C.
        • Jahoor F.
        • Hibbert J.M.
        • et al.
        Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability.
        Ann Surg. 1996; 224: 97-102
        • Vary T.C.
        Increased pyruvate dehydrogenase kinase activity in response to sepsis.
        Am J Physiol. 1991; 260: E669-E674
        • Brown S.D.
        • Clark C.
        • Gutierrez G.
        Pulmonary lactate release in patients with sepsis and the adult respiratory distress syndrome.
        J Crit Care. 1996; 11: 2-8
        • Severin P.N.
        • Uhing M.R.
        • Beno D.W.
        • et al.
        Endotoxin-induced hyperlactatemia results from decreased lactate clearance in hemodynamically stable rats.
        Crit Care Med. 2002; 30: 2509-2514
        • Funk G.C.
        • Doberer D.
        • Kneidinger N.
        • et al.
        Acid-base disturbances in critically ill patients with cirrhosis.
        Liver Int. 2007; 27: 901-909
        • Tsai M.H.
        • Chen Y.C.
        • Lien J.M.
        • et al.
        Hemodynamics and metabolic studies on septic shock in patients with acute liver failure.
        J Crit Care. 2008; 23: 468-472
        • Bernal W.
        • Donaldson N.
        • Wyncoll D.
        • et al.
        Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study.
        Lancet. 2002; 359: 558-563
        • Burcham P.C.
        • Harman A.W.
        Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes.
        J Biol Chem. 1991; 266: 5049-5054
        • Donnelly P.J.
        • Walker R.M.
        • Racz W.J.
        Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity.
        Arch Toxicol. 1994; 68: 110-118
        • Esterline R.L.
        • Ray S.D.
        • Ji S.
        Reversible and irreversible inhibition of hepatic mitochondrial respiration by acetaminophen and its toxic metabolite, N-acetyl-p-benzoquinoneimine (NAPQI).
        Biochem Pharmacol. 1989; 38: 2387-2390
        • Kraut J.A.
        • Kurtz I.
        Toxic alcohol ingestions: clinical features, diagnosis, and management.
        Clin J Am Soc Nephrol. 2008; 3: 208-225
        • Brooks D.E.
        • Wallace K.L.
        Acute propylene glycol ingestion.
        J Toxicol Clin Toxicol. 2002; 40: 513-516
        • Wilson K.C.
        • Reardon C.
        • Theodore A.C.
        • et al.
        Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines: a case series and prospective, observational pilot study.
        Chest. 2005; 128: 1674-1681
        • Demey H.E.
        • Daelemans R.A.
        • Verpooten G.A.
        • et al.
        Propylene glycol-induced side effects during intravenous nitroglycerin therapy.
        Intensive Care Med. 1988; 14: 221-226
        • Bedichek E.
        • Kirschbaum B.
        A case of propylene glycol toxic reaction associated with etomidate infusion.
        Arch Intern Med. 1991; 151: 2297-2298
        • Miller M.A.
        • Forni A.
        • Yogaratnam D.
        Propylene glycol-induced lactic acidosis in a patient receiving continuous infusion pentobarbital.
        Ann Pharmacother. 2008; 42: 1502-1506
        • Yahwak J.A.
        • Riker R.R.
        • Fraser G.L.
        • et al.
        Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity.
        Pharmacotherapy. 2008; 28: 984-991
        • Parker M.G.
        • Fraser G.L.
        • Watson D.M.
        • et al.
        Removal of propylene glycol and correction of increased osmolar gap by hemodialysis in a patient on high dose lorazepam infusion therapy.
        Intensive Care Med. 2002; 28: 81-84
        • Zar T.
        • Yusufzai I.
        • Sullivan A.
        • et al.
        Acute kidney injury, hyperosmolality and metabolic acidosis associated with lorazepam.
        Nat Clin Pract Nephrol. 2007; 3: 515-520
        • Shibuyama S.
        • Gevorkyan A.
        • Yoo U.
        • et al.
        Understanding and avoiding antiretroviral adverse events.
        Curr Pharm Des. 2006; 12: 1075-1090
        • ter Hofstede H.J.
        • Willems H.L.
        • Koopmans P.P.
        Serum L-lactate and pyruvate in HIV-infected patients with and without presumed NRTI-related adverse events compared to healthy volunteers.
        J Clin Virol. 2004; 29: 44-50
        • Birkus G.
        • Hitchcock M.J.
        • Cihlar T.
        Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors.
        Antimicrob Agents Chemother. 2002; 46: 716-723
        • Moyle G.
        Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity.
        Clin Ther. 2000; 22 ([discussion: 898]): 911-936
        • Hocqueloux L.
        • Alberti C.
        • Feugeas J.P.
        • et al.
        Prevalence, risk factors and outcome of hyperlactataemia in HIV-infected patients.
        HIV Med. 2003; 4: 18-23
      1. Lactic Acidosis International Study Group. Risk factors for lactic acidosis and severe hyperlactataemia in HIV-1-infected adults exposed to antiretroviral therapy.
        AIDS. 2007; 21: 2455-2464
        • Schambelan M.
        • Benson C.A.
        • Carr A.
        • et al.
        Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel.
        J Acquir Immune Defic Syndr. 2002; 31: 257-275
        • Cote H.C.
        • Brumme Z.L.
        • Craib K.J.
        • et al.
        Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients.
        N Engl J Med. 2002; 346: 811-820
        • Misbin R.I.
        Phenformin-associated lactic acidosis: pathogenesis and treatment.
        Ann Intern Med. 1977; 87: 591-595
        • Owen M.R.
        • Doran E.
        • Halestrap A.P.
        Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.
        Biochem J. 2000; 348: 607-614
        • Dell'aglio D.M.
        • Perino L.J.
        • Kazzi Z.
        • et al.
        Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature.
        Ann Emerg Med. 2009; 54: 818-823
        • Misbin R.I.
        • Green L.
        • Stadel B.V.
        • et al.
        Lactic acidosis in patients with diabetes treated with metformin.
        N Engl J Med. 1998; 338: 265-266
        • Stades A.M.
        • Heikens J.T.
        • Erkelens D.W.
        • et al.
        Metformin and lactic acidosis: cause or coincidence? A review of case reports.
        J Intern Med. 2004; 255: 179-187
        • Seidowsky A.
        • Nseir S.
        • Houdret N.
        • et al.
        Metformin-associated lactic acidosis: a prognostic and therapeutic study.
        Crit Care Med. 2009; 37: 2191-2196
        • Fodale V.
        • La Monaca E.
        Propofol infusion syndrome: an overview of a perplexing disease.
        Drug Saf. 2008; 31: 293-303
        • Kang T.M.
        Propofol infusion syndrome in critically ill patients.
        Ann Pharmacother. 2002; 36: 1453-1456
        • Merz T.M.
        • Regli B.
        • Rothen H.U.
        • et al.
        Propofol infusion syndrome—a fatal case at a low infusion rate.
        Anesth Analg. 2006; 103: 1050
        • Mehta N.
        • DeMunter C.
        • Habibi P.
        • et al.
        Short-term propofol infusions in children.
        Lancet. 1999; 354: 866-867
        • Wolf A.
        • Weir P.
        • Segar P.
        • et al.
        Impaired fatty acid oxidation in propofol infusion syndrome.
        Lancet. 2001; 357: 606-607
        • Motsch J.
        • Roggenbach J.
        Anaesthesist. 2004; 53 ([in German]): 1009-1022
      2. Pharmacia & Upjohn. Zyvox (linezolid) package insert.
        (Revised July 2008). Available at: (Accessed August 24, 2009)
        • Narita M.
        • Tsuji B.T.
        • Yu V.L.
        Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome.
        Pharmacotherapy. 2007; 27: 1189-1197
        • Apodaca A.A.
        • Rakita R.M.
        Linezolid-induced lactic acidosis.
        N Engl J Med. 2003; 348: 86-87
        • Kopterides P.
        • Papadomichelakis E.
        • Armaganidis A.
        Linezolid use associated with lactic acidosis.
        Scand J Infect Dis. 2005; 37: 153-154
        • Wiener M.
        • Guo Y.
        • Patel G.
        • et al.
        Lactic acidosis after treatment with linezolid.
        Infection. 2007; 35: 278-281
        • De Vriese A.S.
        • Coster R.V.
        • Smet J.
        • et al.
        Linezolid-induced inhibition of mitochondrial protein synthesis.
        Clin Infect Dis. 2006; 42: 1111-1117
        • Palenzuela L.
        • Hahn N.M.
        • Nelson Jr., R.P.
        • et al.
        Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis?.
        Clin Infect Dis. 2005; 40: e113-e116
        • Pea F.
        • Scudeller L.
        • Lugano M.
        • et al.
        Hyperlactacidemia potentially due to linezolid overexposure in a liver transplant recipient.
        Clin Infect Dis. 2006; 42: 434-435
        • Bernard L.
        • Stern R.
        • Lew D.
        • et al.
        Serotonin syndrome after concomitant treatment with linezolid and citalopram.
        Clin Infect Dis. 2003; 36: 1197
        • Madias N.E.
        • Goorno W.E.
        • Herson S.
        Severe lactic acidosis as a presenting feature of pheochromocytoma.
        Am J Kidney Dis. 1987; 10: 250-253
        • Bundgaard H.
        • Kjeldsen K.
        • Suarez Krabbe K.
        • et al.
        Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans.
        Am J Physiol Heart Circ Physiol. 2003; 284: H1028-H1034
        • James J.H.
        • Luchette F.A.
        • McCarter F.D.
        • et al.
        Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis.
        Lancet. 1999; 354: 505-508
        • Levy B.
        • Mansart A.
        • Bollaert P.E.
        • et al.
        Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats.
        Intensive Care Med. 2003; 29: 292-300
        • Eichenholz A.
        • Mulhausen R.O.
        • Redleaf P.S.
        Nature of acid-base disturbance in salicylate intoxication.
        Metabolism. 1963; 12: 164-175
        • Singer R.B.
        The acid-base disturbance in salicylate intoxication.
        Medicine (Baltimore). 1954; 33: 1-13
        • Fromenty B.
        • Pessayre D.
        Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity.
        Pharmacol Ther. 1995; 67: 101-154
        • Vessey D.A.
        • Hu J.
        • Kelley M.
        Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria.
        J Biochem Toxicol. 1996; 11: 73-78
        • Kaplan E.H.
        • Kennedy J.
        • Davis J.
        Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates.
        Arch Biochem Biophys. 1954; 51: 47-61
        • Haas R.
        • Parker Jr., W.D.
        • Stumpf D.
        • et al.
        Salicylate-induced loose coupling: protonmotive force measurements.
        Biochem Pharmacol. 1985; 34: 900-902
        • Tarui S.
        • Kono N.
        • Kuwajima M.
        • et al.
        Hereditary and acquired abnormalities in erythrocyte phosphofructokinase activity: the close association with altered 2,3-diphosphoglycerate levels.
        Hemoglobin. 1980; 4: 581-592
        • Sallis R.E.
        Management of salicylate toxicity.
        Am Fam Physician. 1989; 39: 265-270
        • Klotz U.
        Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid.
        Clin Pharmacokinet. 1985; 10: 285-302
        • Dunn R.J.
        Massive sulfasalazine and paracetamol ingestion causing acidosis, hyperglycemia, coagulopathy, and methemoglobinemia.
        J Toxicol Clin Toxicol. 1998; 36: 239-242
        • Alvarez F.G.
        • Guntupalli K.K.
        Isoniazid overdose: four case reports and review of the literature.
        Intensive Care Med. 1995; 21: 641-644
        • Goli A.K.
        • Goli S.A.
        • Byrd Jr., R.P.
        • et al.
        Simvastatin-induced lactic acidosis: a rare adverse reaction?.
        Clin Pharmacol Ther. 2002; 72: 461-464
        • Neale R.
        • Reynolds T.M.
        • Saweirs W.
        Statin precipitated lactic acidosis?.
        J Clin Pathol. 2004; 57: 989-990
        • Earthman T.P.
        • Odom L.
        • Mullins C.A.
        Lactic acidosis associated with high-dose niacin therapy.
        South Med J. 1991; 84: 496-497
        • Gustafson P.R.
        Profound lactic acidosis in a young woman treated with nalidixic acid.
        Tex Med. 1985; 81: 53-54
        • Maher J.R.
        • Speyer J.F.
        • Levine M.
        Studies on the mode of action of isoniazid. I. The role of trace metals in the inhibition of bovine liver catalase by isoniazid.
        Am Rev Tuberc. 1958; 77: 501-505
        • Ghirlanda G.
        • Oradei A.
        • Manto A.
        • et al.
        Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study.
        J Clin Pharmacol. 1993; 33: 226-229
        • Mann N.S.
        • Russman H.B.
        • Mann S.K.
        • et al.
        Lactulose and severe lactic acidosis.
        Ann Intern Med. 1985; 103: 637
        • Mukunda B.N.
        Lactic acidosis caused by thiamine deficiency in a pregnant alcoholic patient.
        Am J Med Sci. 1999; 317: 261-262
        • Cho Y.P.
        • Kim K.
        • Han M.S.
        • et al.
        Severe lactic acidosis and thiamine deficiency during total parenteral nutrition–case report.
        Hepatogastroenterology. 2004; 51: 253-255
        • Klein M.
        • Weksler N.
        • Gurman G.M.
        Fatal metabolic acidosis caused by thiamine deficiency.
        J Emerg Med. 2004; 26: 301-303
        • Fattal-Valevski A.
        • Kesler A.
        • Sela B.A.
        • et al.
        Outbreak of life-threatening thiamine deficiency in infants in Israel caused by a defective soy-based formula.
        Pediatrics. 2005; 115: e233-e238
        • Van den Berg P.J.
        • Bijlstra P.J.
        • Brekelmans G.J.
        Thiamine deficiency as a single cause of life-threatening lactic acidosis in a patient with acute axonal polyneuropathy.
        Intern Emerg Med. 2009; 4: 539-541
        • Song Q.
        • Singleton C.K.
        Mitochondria from cultured cells derived from normal and thiamine-responsive megaloblastic anemia individuals efficiently import thiamine diphosphate.
        BMC Biochem. 2002; 3: 8
        • Singleton C.K.
        • Martin P.R.
        Molecular mechanisms of thiamine utilization.
        Curr Mol Med. 2001; 1: 197-207
        • Hakim A.M.
        The induction and reversibility of cerebral acidosis in thiamine deficiency.
        Ann Neurol. 1984; 16: 673-679
        • Berthon H.A.
        • Kuchel P.W.
        • Nixon P.F.
        High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies.
        Biochemistry. 1992; 31: 12792-12798
        • Navarro D.
        • Zwingmann C.
        • Chatauret N.
        • et al.
        Glucose loading precipitates focal lactic acidosis in the vulnerable medial thalamus of thiamine-deficient rats.
        Metab Brain Dis. 2008; 23: 115-122
        • Visser C.M.
        • Kellogg R.M.
        Biotin. Its place in evolution.
        J Mol Evol. 1978; 11: 171-187
        • Wessman G.E.
        • Werkman C.H.
        Biotin in the assimilation of heavy carbon in Oxalacetate.
        Arch Biochem. 1950; 26: 214-218
        • Sydenstricker V.P.
        • Singal S.A.
        • Briggs A.P.
        • et al.
        Preliminary observations on “Egg White Injury” in man and its cure with a biotin concentrate.
        Science. 1942; 95: 176-177
        • Gyorgy P.
        • Rose C.S.
        Cure of egg-white injury in rats by the “Toxic” fraction (avidin) of egg white given parenterally.
        Science. 1941; 94: 261-262
        • Carlson G.L.
        • Williams N.
        • Barber D.
        • et al.
        Biotin deficiency complicating long-term total parenteral nutrition in an adult patient.
        Clin Nutr. 1995; 14: 186-190
        • Mikati M.A.
        • Zalloua P.
        • Karam P.
        • et al.
        Novel mutation causing partial biotinidase deficiency in a Syrian boy with infantile spasms and retardation.
        J Child Neurol. 2006; 21: 978-981
        • Said H.M.
        • Ortiz A.
        • McCloud E.
        • et al.
        Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid.
        Am J Physiol. 1998; 275: C1365-C1371
        • Moreadith R.W.
        • Batshaw M.L.
        • Ohnishi T.
        • et al.
        Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.
        J Clin Invest. 1984; 74: 685-697
        • Mathews C.K.
        • van Holde K.E.
        Biochemistry.
        The Benjamin/Cummings Publishing Company, Redwood City (CA)1990
        • Fellman V.
        The GRACILE syndrome, a neonatal lethal metabolic disorder with iron overload.
        Blood Cells Mol Dis. 2002; 29: 444-450
        • Finch C.A.
        • Gollnick P.D.
        • Hlastala M.P.
        • et al.
        Lactic acidosis as a result of iron deficiency.
        J Clin Invest. 1979; 64: 129-137
        • Wang Y.M.
        • van Eys J.
        Nutritional significance of fructose and sugar alcohols.
        Annu Rev Nutr. 1981; 1: 437-475
        • Wekell M.M.
        • Hartman W.J.
        • Dong F.M.
        Incidence of increased numbers of Clostridium perfringens in the intestinal tract of rats fed xylitol.
        J Nutr. 1980; 110: 2103-2108
        • Craig G.M.
        • Crane C.W.
        Lactic acidosis complicating liver failure after intravenous fructose.
        Br Med J. 1971; 4: 211-212
        • Batstone G.F.
        • Alberti K.G.
        • Dewar A.K.
        Reversible lactic acidosis associated with repeated intravenous infusions of sorbitol and ethanol.
        Postgrad Med J. 1977; 53: 567-569
        • Korttila K.
        • Mattila M.A.
        Increased serum concentrations of lactic, pyruvic and uric acid and bilibubin after postoperative xylitol infusion.
        Acta Anaesthesiol Scand. 1979; 23: 273-277
        • Wang Y.M.
        • King S.M.
        • Patterson J.H.
        • et al.
        Mechanism of xylitol toxicity in the rabbit.
        Metabolism. 1973; 22: 885-894
      3. Facts about strychnine. Emergency preparedness and response.
        (Available at:) (Accessed August 24, 2009)
        • Boyd R.E.
        • Brennan P.T.
        • Deng J.F.
        • et al.
        Strychnine poisoning. Recovery from profound lactic acidosis, hyperthermia, and rhabdomyolysis.
        Am J Med. 1983; 74: 507-512
        • Snow R.W.
        • Guerra C.A.
        • Noor A.M.
        • et al.
        The global distribution of clinical episodes of Plasmodium falciparum malaria.
        Nature. 2005; 434: 214-217
        • Krishna S.
        • Waller D.W.
        • ter Kuile F.
        • et al.
        Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance.
        Trans R Soc Trop Med Hyg. 1994; 88: 67-73
        • Molyneux M.E.
        • Looareesuwan S.
        • Menzies I.S.
        • et al.
        Reduced hepatic blood flow and intestinal malabsorption in severe falciparum malaria.
        Am J Trop Med Hyg. 1989; 40: 470-476
        • Pukrittayakamee S.
        • Krishna S.
        • Ter Kuile F.
        • et al.
        Alanine metabolism in acute falciparum malaria.
        Trop Med Int Health. 2002; 7: 911-918
        • Mi-Ichi F.
        • Takeo S.
        • Takashima E.
        • et al.
        Unique properties of respiratory chain in Plasmodium falciparum mitochondria.
        Adv Exp Med Biol. 2003; 531: 117-133
        • Planche T.
        • Agbenyega T.
        • Bedu-Addo G.
        • et al.
        A prospective comparison of malaria with other severe diseases in African children: prognosis and optimization of management.
        Clin Infect Dis. 2003; 37: 890-897
        • Watt G.
        • Jongsakul K.
        • Ruangvirayuth R.
        A pilot study of N-acetylcysteine as adjunctive therapy for severe malaria.
        QJM. 2002; 95: 285-290
        • Haas R.
        • Stumpf D.A.
        • Parks J.K.
        • et al.
        Inhibitory effects of sodium valproate on oxidative phosphorylation.
        Neurology. 1981; 31: 1473-1476
        • Ponchaut S.
        • van Hoof F.
        • Veitch K.
        Cytochrome aa3 depletion is the cause of the deficient mitochondrial respiration induced by chronic valproate administration.
        Biochem Pharmacol. 1992; 43: 644-647
        • Ponchaut S.
        • Van Hoof F.
        • Veitch K.
        Valproate and cytochrome c oxidase deficiency.
        Eur J Pediatr. 1995; 154: 79
        • Rumbach L.
        • Cremel G.
        • Marescaux C.
        • et al.
        Succinate transport inhibition by valproate in rat renal mitochondria.
        Eur J Pharmacol. 1989; 164: 577-581
        • Rumbach L.
        • Mutet C.
        • Cremel G.
        • et al.
        Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies.
        Mol Pharmacol. 1986; 30: 270-273
        • Lin C.M.
        • Thajeb P.
        Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA.
        Metab Brain Dis. 2007; 22: 105-109
        • Blayac D.
        • Roch A.
        • Michelet P.
        • et al.
        Ann Fr Anesth Reanim. 2004; 23 ([in French]): 1007-1010
        • Lam C.W.
        • Lau C.H.
        • Williams J.C.
        • et al.
        Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy.
        Eur J Pediatr. 1997; 156: 562-564
        • Jonsson S.
        • O'Meara M.
        • Young J.B.
        Acute cocaine poisoning. Importance of treating seizures and acidosis.
        Am J Med. 1983; 75: 1061-1064
        • Isner J.M.
        • Estes 3rd, N.A.
        • Thompson P.D.
        • et al.
        Acute cardiac events temporally related to cocaine abuse.
        N Engl J Med. 1986; 315: 1438-1443
        • Giammarco R.A.
        The athlete, cocaine, and lactic acidosis: a hypothesis.
        Am J Med Sci. 1987; 294: 412-414
        • Burchell S.A.
        • Ho H.C.
        • Yu M.
        • et al.
        Effects of methamphetamine on trauma patients: a cause of severe metabolic acidosis?.
        Crit Care Med. 2000; 28: 2112-2115
        • Lan K.C.
        • Lin Y.F.
        • Yu F.C.
        • et al.
        Clinical manifestations and prognostic features of acute methamphetamine intoxication.
        J Formos Med Assoc. 1998; 97: 528-533
        • Thrash B.
        • Karuppagounder S.S.
        • Uthayathas S.
        • et al.
        Neurotoxic effects of methamphetamine.
        Neurochem Res. 2009; 35: 171-179
        • Tian C.
        • Murrin L.C.
        • Zheng J.C.
        Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells.
        PLoS One. 2009; 4: e5546
      4. Public health statement for cyanide.
        ([Cited 2007 September 4]. Available at:) (Accessed August 24, 2009)
        • El Hadri L.
        • Chanas B.
        • Ghanayem B.I.
        Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice.
        Toxicol Appl Pharmacol. 2005; 205: 116-125
        • Nessim S.J.
        • Richardson R.M.
        Dialysis for thiocyanate intoxication: a case report and review of the literature.
        ASAIO J. 2006; 52: 479-481
        • Johanning R.J.
        • Zaske D.E.
        • Tschida S.J.
        • et al.
        A retrospective study of sodium nitroprusside use and assessment of the potential risk of cyanide poisoning.
        Pharmacotherapy. 1995; 15: 773-777
        • Krab K.
        • Slater E.C.
        Ferrocyanide as electron donor to cytochrome aa3. Cytochrome c requirement for oxygen uptake.
        Biochim Biophys Acta. 1979; 547: 58-69
        • Chen K.K.
        • Rose C.L.
        Nitrite and thiosulfate therapy in cyanide poisoning.
        J Am Med Assoc. 1952; 149: 113-119
        • Baskin S.I.
        • Horowitz A.M.
        • Nealley E.W.
        The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning.
        J Clin Pharmacol. 1992; 32: 368-375
        • Cottrell J.E.
        • Casthely P.
        • Brodie J.D.
        • et al.
        Prevention of nitroprusside-induced cyanide toxicity with hydroxocobalamin.
        N Engl J Med. 1978; 298: 809-811
        • Dobkin A.B.
        Anaesthesia with azeotropic mixture of nalothane and diethyl ether; the effect on acid-base balance, electrolyte balance, cardiac rhythm and circulatory dynamics.
        Br J Anaesth. 1959; 31: 53-65
        • Kumar B.
        • Kumar A.
        • Pandey B.N.
        • et al.
        Role of mitochondrial oxidative stress in the apoptosis induced by diospyrin diethylether in human breast carcinoma (MCF-7) cells.
        Mol Cell Biochem. 2009; 320: 185-195
        • Valik D.
        Encephalopathy, lactic acidosis, hyperammonaemia and 5-fluorouracil toxicity.
        Br J Cancer. 1998; 77: 1710-1712
        • Ito T.
        Children's toxicology from bench to bed—liver injury (1): drug-induced metabolic disturbance–toxicity of 5-FU for pyrimidine metabolic disorders and pivalic acid for carnitine metabolism.
        J Toxicol Sci. 2009; 34: SP217-SP222
        • Zelickson A.S.
        • Mottaz J.
        • Weiss L.W.
        Effects of topical fluorouracil on normal skin.
        Arch Dermatol. 1975; 111: 1301-1306
        • Noordhuis P.
        • Holwerda U.
        • Van der Wilt C.L.
        • et al.
        5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers.
        Ann Oncol. 2004; 15: 1025-1032
        • DiMauro S.
        • Schon E.A.
        Mitochondrial respiratory-chain diseases.
        N Engl J Med. 2003; 348: 2656-2668
        • DiMauro S.
        • Mancuso M.
        Mitochondrial diseases: therapeutic approaches.
        Biosci Rep. 2007; 27: 125-137
        • Kaufmann P.
        • Engelstad K.
        • Wei Y.
        • et al.
        Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial.
        Neurology. 2006; 66: 324-330
        • van den Berghe G.
        Disorders of gluconeogenesis.
        J Inherit Metab Dis. 1996; 19: 470-477
        • Robinson B.H.
        Lactic acidemia and mitochondrial disease.
        Mol Genet Metab. 2006; 89: 3-13
        • Robinson B.H.
        • Oei J.
        • Saudubray J.M.
        • et al.
        The French and North American phenotypes of pyruvate carboxylase deficiency, correlation with biotin containing protein by 3H-biotin incorporation, 35S-streptavidin labeling, and Northern blotting with a cloned cDNA probe.
        Am J Hum Genet. 1987; 40: 50-59
        • Hamilton J.
        • Rae M.D.
        • Logan R.W.
        • et al.
        A case of benign pyruvate carboxylase deficiency with normal development.
        J Inherit Metab Dis. 1997; 20: 401-403
        • Morath M.A.
        • Okun J.G.
        • Muller I.B.
        • et al.
        Neurodegeneration and chronic renal failure in methylmalonic aciduria—a pathophysiological approach.
        J Inherit Metab Dis. 2008; 31: 35-43
        • Kolker S.
        • Sauer S.W.
        • Surtees R.A.
        • et al.
        The aetiology of neurological complications of organic acidaemias—a role for the blood-brain barrier.
        J Inherit Metab Dis. 2006; 29 ([discussion: 705–6]): 701-704
        • Thornalley P.J.
        Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy.
        Gen Pharmacol. 1996; 27: 565-573
        • Uribarri J.
        • Oh M.S.
        • Carroll H.J.
        D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms.
        Medicine (Baltimore). 1998; 77: 73-82
        • Hudson M.
        • Pocknee R.
        • Mowat N.A.
        D-lactic acidosis in short bowel syndrome–an examination of possible mechanisms.
        Q J Med. 1990; 74: 157-163
        • Oh M.S.
        • Phelps K.R.
        • Traube M.
        • et al.
        D-lactic acidosis in a man with the short-bowel syndrome.
        N Engl J Med. 1979; 301: 249-252
        • Halperin M.L.
        • Kamel K.S.
        D-lactic acidosis: turning sugar into acids in the gastrointestinal tract.
        Kidney Int. 1996; 49: 1-8
        • Zhang D.L.
        • Jiang Z.W.
        • Jiang J.
        • et al.
        D-lactic acidosis secondary to short bowel syndrome.
        Postgrad Med J. 2003; 79: 110-112
        • Brooks G.A.
        The lactate shuttle during exercise and recovery.
        Med Sci Sports Exerc. 1986; 18: 360-368