Advertisement
Review Article| Volume 26, ISSUE 2, P335-354, April 2010

The Optimal Hematocrit

  • Louise Harder
    Correspondence
    Corresponding author.
    Affiliations
    Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, OHSU-UHN-67, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
    Search for articles by this author
  • Lynn Boshkov
    Affiliations
    Department of Pulmonary and Critical Care Medicine Hemostasis & Thrombosis Service, Transfusion Medicine, Oregon Health & Sciences University, OHSU L471, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Blood Data Resource Center
        The 2007 National Blood Collection and Utilization Survey Report.
        (Available at:) (Accessed October 10, 2009)
        • Corwin H.
        • Gettinger A.
        • Pearl R.
        • et al.
        The CRIT Study: anemia and blood transfusion in the critically ill—current clinical practice in the United States.
        Crit Care Med. 2004; 32: 39-52
        • Hebert P.
        • Wells G.
        • Blajchman M.
        • et al.
        A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care.
        N Engl J Med. 1999; 340: 409-417
        • Taylor R.
        • Manganero L.
        • O'Brien J.
        • et al.
        Impact of allogenic packed red blood cell transfusion on nosocomial infection rates in the critically ill patient.
        Crit Care Med. 2002; 30: 2249-2254
        • Dellinger P.
        • Levy M.
        • Carlett J.
        • et al.
        Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008.
        Crit Care Med. 2008; 36: 296-327
        • Rivers E.
        • Nguyen B.
        • Havstad S.
        • et al.
        Early goal-directed therapy in the treatment of severe sepsis and septic shock.
        N Engl J Med. 2001; 345: 1368-1377
        • Fitzgerald R.
        • Martin C.
        • Dietz G.
        • et al.
        Transfusing red blood cells stored in citrate phosphate dextrose adenine-1 for 28 days fails to improve tissue oxygenation in rats.
        Crit Care Med. 1997; 25: 726-732
        • Tsai A.
        • Cabrales P.
        • Intaglietta M.
        Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions.
        Transfusion. 2004; 44: 1626-1634
        • Huang T.
        Monitoring oxygen delivery in the critically ill.
        Chest. 2005; 128: 554S-560S
        • Hameed S.
        • Aird W.
        • Cohn S.
        Oxygen delivery.
        Crit Care Med. 2003; 31: S658-S667
        • Hebert P.
        • Van der Linden P.
        • Biro G.
        Physiologic aspects of anemia.
        Crit Care Clin. 2004; 20: 187-212
        • Sibbald W.
        • Messmer K.
        • Fink M.
        Roundtable conference on tissue oxygenation in acute medicine, Brussels, Belgium 14-16 March 1998.
        Intensive Care Med. 2000; 26: 780-791
        • Van der Linden P.
        • Vincent J.L.
        Effects of blood transfusion on oxygen uptake: old concepts adapted to new therapeutic strategies?.
        Crit Care Med. 1997; 25: 723-724
        • Desai S.
        • Manji M.
        Minimum haemoglobin in intensive care.
        Trauma. 2004; 6: 187-191
        • Hsia D.
        Respiratory function of hemoglobin.
        N Engl J Med. 1998; 338: 239-247
        • Klein H.
        • Spahn D.
        • Carson J.
        Red blood cell transfusion in clinical practice.
        Lancet. 2007; 370: 415-426
        • Tinmouth A.
        • Fergusson D.
        • Yee I.
        Clinical consequences of red cell storage in the critically ill.
        Transfusion. 2006; 46: 2014-2027
        • Spiess B.
        Red cell transfusions and guidelines: a work in progress.
        Hematol Oncol Clin North Am. 2007; 21: 185-200
        • Cabrales P.
        • Tsai A.
        • Intaglietta M.
        Modulation of perfusion and oxygenation by red blood cell oxygen affinity during acute anemia.
        Am J Respir Cell Mol Biol. 2008; 38: 354-361
        • Madjdpour C.
        • Spahn D.
        • Weiskopf R.
        Anemia and perioperative red blood cell transfusion: a matter of tolerance.
        Crit Care Med. 2006; 34: S102-S108
        • Morisaki H.
        • Sibbald W.
        Tissue oxygen delivery and the microcirculation.
        Crit Care Clin. 2004; 20: 213-223
        • Torres Filho I.
        • Spiess B.
        • Pittman R.
        • et al.
        Experimental analysis of critical oxygen delivery.
        Am J Physiol Heart Circ Physiol. 2005; 288: H1071-H1079
        • Van Woerkens E.
        • Trouwborst A.
        • Lanschot J.
        Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human?.
        Anesth Analg. 1992; 75: 818-821
        • Fink M.
        Cytopathic hypoxia in sepsis.
        Acta Anaesthesiol Scand Suppl. 1997; 110: 87-95
        • Marik P.
        • Sibbald W.
        Effect of stored-blood transfusion on oxygen delivery in patients with sepsis.
        JAMA. 1993; 269: 3024-3029
        • Sakr Y.
        • Chierego M.
        • Piagnerelli M.
        • et al.
        Microvascular response to red blood cell transfusion in patients with severe sepsis.
        Crit Care Med. 2007; 35: 1639-1644
        • Raat N.
        • Ince C.
        Oxygenating the microcirculation: the perspective from blood transfusion and blood storage.
        Vox Sang. 2007; 93: 12-18
        • Leone M.
        • Blidi S.
        • Antonini F.
        • et al.
        Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock.
        Anesthesiology. 2009; 111: 366-371
        • Walsh T.
        Recent advances in gas exchange measurement in intensive care patients.
        Br J Anaesth. 2003; 91: 120-131
        • Nishikawa T.
        • Dohi H.
        Errors in the measurement of cardiac output by thermodilution.
        Can J Anesth. 2003; 40 (Journal Canadien d'anesthésie): 142-153
        • Leach R.
        • Treacher D.
        The pulmonary physician in critical care—2: oxygen delivery and consumption in the critically ill.
        Thorax. 2002; 57: 170-177
        • Weiskopf R.
        • Viele M.
        • Feiner J.
        • et al.
        Human cardiovascular and metabolic response to acute, severe, isovolemic anemia.
        JAMA. 1998; 279: 217-221
        • Priebe H.
        Hemodilution and oxygenation.
        Int Anesthesiol Clin. 1981; 19: 237-255
        • Wilkerson D.
        • Rosen A.
        • Sehgal L.
        • et al.
        Limits of cardiac compensation in anemic baboons.
        Surgery. 1988; 103: 665-670
        • Hagl S.
        • Heimisch W.
        • Meisner H.
        • et al.
        The effect of hemodilution on regional myocardial function in the presence of coronary stenosis.
        Basic Res Cardiol. 1977; 72: 344-364
        • Neuhof H.
        • Wolf H.
        Oxygen uptake during hemodilution.
        Bibl Haematol. 1975; 41: 66-75
        • Toy P.
        • Feiner J.
        • Viele M.
        • et al.
        Fatigue during acute isovolemic anemia in healthy, resting humans.
        Transfusion. 2000; 40: 457-460
        • Weiskopf R.
        • Kramer J.
        • Viele M.
        • et al.
        Acute severe isovolemic anemia impairs cognitive function and memory in humans.
        Anesthesiology. 2000; 92: 1646-1652
        • Weiskopf R.
        • Feiner J.
        • Hopf H.
        • et al.
        Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia.
        Anesthesiology. 2002; 96: 871-877
        • Carson J.
        • Spence R.
        • Poses R.
        • et al.
        Severity of anaemia and operative mortality and morbidity [abstract].
        Lancet. 1988; 331: 727-729
        • Viele M.
        • Weiskopf R.
        What can we learn about the need for transfusion from patients who refuse blood? The experience with Jehovah's Witnesses [abstract].
        Transfusion. 2004; 34: 396-401
        • Carson J.
        • Noveck H.
        • Berlin J.
        • et al.
        Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion.
        Transfusion. 2002; 42: 812-818
        • Spahn D.
        • Schmid E.
        • Seifert B.
        • et al.
        Hemodilution tolerance in patients with coronary artery disease who are receiving chronic p-adrenergic blocker therapy.
        Anesth Analg. 1996; 82: 687-694
        • Carson J.
        • Reynolds R.
        In search of the transfusion threshold.
        Hematology. 2005; 10: 86-88
        • Tobian A.
        • Ness P.
        • Noveck H.
        • et al.
        Time course and etiology of death in patients with severe anemia.
        Transfusion. 2009; 49: 1395-1399
        • Levy P.
        • Kim S.
        • Eckel P.
        • et al.
        Limit to cardiac compensation during acute isovolemic hemodilution: influence of coronary stenosis.
        Am J Physiol Heart Circ Physiol. 1993; 265: H340-H349
        • Herregods L.
        • Foubert L.
        • Moerman A.
        • et al.
        Comparative study of limited intentional normovolaemic haemodilution in patients with left main coronary artery stenosis.
        Anaesthesia. 1995; 50: 950-953
        • Catoire P.
        • Saada M.
        • Lui N.
        • et al.
        Effect of preoperative normovolemic hemodilution on left ventricular segmental wall motion during abdominal aortic surgery.
        Anesth Analg. 1992; 75: 654-659
        • Hebert P.
        • Wells G.
        • Tweeddale M.
        • et al.
        Does transfusion practice affect mortality in critically ill patients? Transfusion Requirements in Critical Care (TRICC) Investigators and the Canadian Critical Care Trials Group [abstract].
        Am J Respir Crit Care Med. 1997; 155: 1618-1623
        • Rao S.
        • Jollis J.
        • Harrington R.
        • et al.
        Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes.
        JAMA. 2004; 292: 1555-1562
        • Gerber D.
        Transfusion of packed red blood cells in patients with ischemic heart disease.
        Crit Care Med. 2008; 36: 1068-1074
        • Carson J.
        • Terrin M.
        • Magazine J.
        • et al.
        Transfusion trigger trial for functional outcomes in cardiovascular patients undergoing surgical hip fracture repair (FOCUS).
        Transfusion. 2006; 46: 2192-2206
      1. Functional Outcomes in Cardiovascular Patients Undergoing Surgical Hip Fracture Repair (FOCUS).
        (Available at:) (Accessed November 3, 2009)
      2. Conservative versus liberal red cell transfusion in myocardial infarction trial: the CRIT pilot.
        (Available at:) (Accessed November 3, 2009)
        • Piagnerelli M.
        The red blood cell: an underestimated actor in alterations of the microcirculation.
        Crit Care Med. 2009; 37: 1158-1160
        • Kleinbongard P.
        • Schulz R.
        • Rassaf T.
        • et al.
        Red blood cells express a functional endothelial nitric oxide synthase.
        Blood. 2006; 107: 2943-2951
        • Cao Z.
        • Bell J.
        • Mohanty J.
        • et al.
        Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation.
        Am J Physiol Heart Circ Physiol. 2009; 297: H1494-H1503
        • Sprague R.
        • Stephenson A.
        • Ellsworth M.
        Red not dead: signaling in and from erythrocytes.
        Trends Endocrinol Metab. 2007; 18: 350-355
        • Cabrales P.
        Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
        Am J Physiol Heart Circ Physiol. 2007; 293: 1206-1215
        • Scharte M.
        • Fink M.
        Red blood cell physiology in critical illness.
        Crit Care Med. 2003; 31: S651-S657
        • Voerman H.
        • Groeneveld A.
        Blood viscosity and circulatory shock.
        Intensive Care Med. 1989; 15: 72-78
        • Machiedo G.
        • Zaets S.
        • Berezina T.
        Trauma-hemorrhagic shock-induced red blood cell damage leads to decreased microcirculatory blood flow.
        Crit Care Med. 2009; 37: 1000-1010
        • Boudjeltia Z.
        • Piagnerelli M.
        • Piro P.
        Decrease of red blood cell sialic acid membrane content in septic patients.
        Crit Care. 2000; 4: P17
        • Hurd T.
        • Dasmahapatra K.
        Rush B: red blood cell deformability in human and experimental sepsis.
        Arch Surg. 1988; 123: 217-220
        • Powell R.
        • Machiedo G.
        • Rush B.
        Oxygen free radicals: effect on red cell deformability in sepsis.
        Crit Care Med. 1991; 19: 732-735
        • Hersch M.
        • Bersten A.D.
        • Rutledge F.
        • et al.
        Quantitative evidence of microcirculatory compromise in skeletal muscle of normotensive hyperdynamic septic sheep.
        Crit Care Med. 1989; 1: S60
        • Salazar Vázquez B.
        • Wettstein R.
        • Cabrales P.
        Microvascular experimental evidence on the relative significance of restoring oxygen carrying capacity vs. blood viscosity in shock resuscitation.
        Biochim Biophys Acta. 2008; 1784: 1421-1427
        • Mirhashemi S.
        • Ertefai S.
        • Messmer K.
        • et al.
        Model analysis of the enhancement of tissue oxygenation by hemodilution due to increased microvascular flow velocity.
        Microvasc Res. 1987; 34: 290-301
        • Tsai A.
        • Acero C.
        • Nance P.
        • et al.
        Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion.
        Am J Physiol Heart Circ Physiol. 2005; 288: H1730-H1739
        • Cabrales P.
        • Tsai A.
        • Intaglietta M.
        Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity?.
        Shock. 2007; 27: 380-389
        • Taylor R.
        • O'Brien J.
        • Trottier S.
        • et al.
        Red blood cell transfusions and nosocomial infections in critically ill patients.
        Crit Care Med. 2006; 34: 2302-2308
        • Hebert P.
        • Chin-Yee I.
        • Fergusson D.
        • et al.
        A pilot trial evaluating the clinical effects of prolonged storage of red cells.
        Anesth Analg. 2005; 100: 1433-1438
        • Purdy R.
        • Tweeddale M.
        • Merrick P.
        Association of mortality with age of blood transfused in septic ICU patients.
        Can J Anesth. 1997; 44 (Journal canadien d'anesthésie): 1256-1261
        • Lelubre C.
        • Piagnerelli M.
        • Vincent J.L.
        Association between duration of storage of transfused red blood cells and morbidity and mortality in adult patients: myth or reality?.
        Transfusion. 2009; 49: 1384-1394
        • Haradin A.R.
        • Weed R.I.
        • Reed C.F.
        Changes in physical properties of stored erythrocytes.
        Transfusion. 1969; 9: 229-235
        • Heaton A.
        • Keegan T.
        • Holme S.
        In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and citrate phosphate dextrose adenine-1 red cells.
        Br J Haematol. 1989; 71: 131-136
        • Raat N.
        • Verhoeven A.
        • Mik E.
        • et al.
        The effect of storage time of human red cells on intestinal microcirculatory oxygenation in a rat isovolemic exchange model.
        Crit Care Med. 2005; 33: 39-45
        • Berezina T.
        • Zaets S.
        • Morgan C.
        Influence of storage on red blood cell rheological properties.
        J Surg Res. 2002; 102: 6-12
        • Hovav T.
        • Yedgar S.
        • Manny N.
        • et al.
        Alteration of red cell aggregability and shape during blood storage.
        Transfusion. 1999; 39: 277-281
        • Simchon S.
        • Jan K.M.
        • Chien S.
        Influence of red cell deformability on regional flow.
        Am J Physiol. 1987; 253: H895-H903
        • Doyle M.
        • Walker B.
        Stiffened erythrocytes augment the pulmonary hemodynamic response to hypoxia.
        J Appl Physiol. 1990; 69: 1270-1275
        • Reynolds J.
        • Ahearn G.
        • Angelo M.
        • et al.
        S-Nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood.
        Proc Natl Acad Sci U S A. 2007; 104: 17058-17062
        • Nishiyama T.
        • Hanaoka K.
        Hemolysis in stored red blood cell concentrates: modulation by haptoglobin or ulinastatin, a protease inhibitor.
        Crit Care Med. 2001; 29: 1979-1982
        • Semple J.
        • Freedman J.
        Leukoreduction just doesn't take away immunogenic leukocytes, it creates an immunosuppressive leukocyte dose.
        Vox Sang. 2002; 83: 425-427
        • Luk C.
        • Gray-Statchuk L.
        • Cepinkas G.
        • et al.
        WBC reduction reduces storage-associated RBC adhesion to human vascular endothelial cells under conditions of continuous flow in vitro.
        Transfusion. 2003; 43: 151-156
        • Chin-Yee I.
        • Statchuk L.
        • Milkovich S.
        • et al.
        Transfusion of red blood cells under shock conditions in the rat microvasculature.
        Blood. 2004; 104: 2713A
        • Gonzalez A.
        • Yazici I.
        • Kusza K.
        • et al.
        Effects of fresh versus banked blood transfusions on microcirculatory hemodynamics and tissue oxygenation in the rat cremaster model.
        Surgery. 2007; 141: 630-639
        • Van Bommel J.
        • de Korte G.
        • Lind A.
        • et al.
        The effect of the transfusion of stored RBCs on intestinal microvascular oxygenation in the rat.
        Transfusion. 2001; 41: 1515-1523
        • Vamvakas E.
        • Carven J.
        Transfusion and postoperative pneumonia in coronary artery bypass graft surgery: effect of the length of storage of transfused red cells.
        Transfusion. 1999; 39: 701-710
        • Mynster T.
        • Nielsen H.
        The impact of storage time of transfused blood on postoperative infectious complications in rectal cancer surgery.
        Scand J Gastroenterol. 2000; 35: 212-217
        • Offner P.
        • Moore E.
        • Biffl W.
        • et al.
        Increased rate of infection associated with transfusion of old blood after severe injury.
        Arch Surg. 2002; 137: 711-717
        • Leal-Noval S.
        • Jara-Lopez I.
        • Garcia-Garmendia J.
        • et al.
        Influence of erythrocyte concentrate storage time on postsurgical morbidity in cardiac surgery patients.
        Anesthesiology. 2003; 98: 815-822
        • Koch C.
        • Li L.
        • Sessler D.
        • et al.
        Duration of red-cell storage and complications after cardiac surgery.
        N Engl J Med. 2008; 358: 12291239
        • Zallen G.
        • Offner P.
        • Moore E.
        • et al.
        Age of transfused blood is an independent risk factor for postinjury multiple organ failure.
        Am J Surg. 1999; 178: 570-572
        • Keller M.
        • Jean R.
        • LaMorte W.
        • et al.
        Effects of age of transfused blood on length of stay in trauma patients: a preliminary report.
        J Trauma. 2002; 53: 1023-1025
        • Basran S.
        • Frumento R.
        • Cohen A.
        • et al.
        The association between duration of storage of transfused red blood cells and morbidity and mortality after reoperative cardiac surgery.
        Anesth Analg. 2006; 103: 15-20
        • Weinberg J.
        • McGwin G.
        • Griffin R.
        • et al.
        Age of transfused blood: an independent predictor of mortality despite universal leukoreduction.
        J Trauma. 2008; 65: 279-282
        • van de Watering L.
        • Lorinser J.
        • Versteegh M.
        • et al.
        Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients.
        Transfusion. 2006; 46: 1712-1718
        • Walsh T.
        • McArdle F.
        • McLellan S.
        • et al.
        Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients?.
        Crit Care Med. 2004; 32: 364-371
        • Kiraly L.
        • Underwood S.
        • Differding J.
        • et al.
        Transfusion of aged packed red blood cells results in decreased tissue oxygenation in critically injured trauma patients.
        J Trauma. 2009; 67: 29-32
        • Weiskopf R.
        • Feiner J.
        • Hopf H.
        • et al.
        Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans.
        Anesthesiology. 2006; 104: 911-920
        • Vamvakas E.
        • Blajchman M.
        Transfusion-related immunomodulation (TRIM): an update.
        Blood Rev. 2007; 21: 327-348
        • Bilgin Y.
        • Brand A.
        Transfusion-related immunomodulation: a second hit in an inflammatory cascade?.
        Vox Sang. 2008; 95: 261-271
        • Blajchman M.
        Transfusion immunomodulation or TRIM: What does it mean clinically?.
        Hematology. 2005; 10: 208-214
        • van de Watering L.
        • Hermans J.
        • Houbiers J.
        • et al.
        Beneficial effects of leukocyte depletion of transfused blood on postoperative complications in patients undergoing cardiac surgery: a randomized clinical trial.
        Circulation. 1998; 97: 562-568
        • Frietsch T.
        • Karger R.
        • Scholer M.
        • et al.
        Leukodepletion of autologous whole blood has no impact on perioperative infection rate and length of hospital stay.
        Transfusion. 2008; 48: 2133-2142
        • Landers D.
        • Hill G.
        • Wong K.
        • et al.
        Blood transfusion-induced immunomodulation.
        Anesth Analg. 1996; 82: 187-204
        • Shorr A.
        • Duh M.
        • Kelly K.
        • et al.
        Red blood cell transfusion and ventilator-associated pneumonia: a potential link?.
        Crit Care Med. 2004; 32: 666-674
        • Vamvakas E.
        • Carven J.
        RBC transfusion and postoperative length of stay in the hospital or the intensive care unit among patients undergoing coronary artery bypass graft surgery: the effects of confounding factors.
        Transfusion. 2000; 40: 832-839
        • Carson J.
        • Altman D.
        • Duff A.
        • et al.
        Risk of bacterial infection associated with allogeneic blood transfusion among patients undergoing hip fracture repair.
        Transfusion. 1999; 39: 694-700
        • Hill G.
        • Frawley W.
        • Griffith K.
        • et al.
        Allogeneic blood transfusion increases the risk of postoperative bacterial infection: a meta-analysis.
        J Trauma. 2003; 54: 908-914
        • Heiss M.
        • Mempel W.
        • Delanoff C.
        • et al.
        Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery.
        J Clin Oncol. 1994; 12: 1859-1867
        • Busch O.R.
        • Hop W.C.
        • Hoynck van Papendrecht M.A.
        • et al.
        Blood transfusions and prognosis in colorectal cancer.
        N Engl J Med. 1993; 328: 1372-1376
        • Houbiers J.
        • Brand A.
        Randomised controlled trial comparing transfusion of leucocyte-depleted or buffy-coat-depleted blood in surgery for colorectal cancer.
        Lancet. 1994; 344: 573-578
        • Baumgartner J.
        • Silliman C.
        • Moore E.
        • et al.
        Stored red blood cell transfusion induces regulatory T cells.
        J Am Coll Surg. 2009; 208: 110-119
        • Buddeberg F.
        • Beck Schimmer B.
        • Spahn D.
        Transfusion-transmissible infections and transfusion-related immunomodulation.
        Best Pract Res Clin Anaesthesiol. 2008; 22: 503-551
        • Vamvakas E.
        White-blood-cell-containing allogeneic blood transfusion and postoperative infection or mortality: an updated meta-analysis.
        Vox Sang. 2007; 92: 224-232
        • Napolitano L.
        • Corwin H.
        Efficacy of blood transfusion in the critically ill: does age of blood make a difference?.
        Crit Care Med. 2004; 32: 594-595
        • Bilgin Y.
        • van de Watering L.
        • Eijsman L.
        • et al.
        Double-blind, randomized controlled trial on the effect of leukocyte-depleted erythrocyte transfusions in cardiac valve surgery.
        Circulation. 2004; 109: 2755-2760
        • Boshkov L.
        • Furnary A.
        • Morris C.
        Prestorage leukoreduction of red cells in elective cardiac surgery: results of a double blind randomized controlled trial [abstract 380].
        Blood. 2004; 104 (ASH Annual Meeting Abstracts)
        • Hebert P.
        • Fergusson D.
        • Blajchman M.
        • et al.
        Clinical outcomes following institution of the Canadian universal leukoreduction program for red blood cell transfusions.
        JAMA. 2003; 289: 1941-1949
        • Fergusson D.
        • Hebert P.
        • Lee S.
        • et al.
        Clinical outcomes following institution of universal leukoreduction of blood transfusions for premature infants.
        JAMA. 2003; 289: 1950-1956
        • Englehart M.
        • Cho S.
        • Morris M.
        • et al.
        Use of leukoreduced blood does not reduce infection, organ failure, or mortality following trauma.
        World J Surg. 2009; 33: 1626-1632
        • Boshkov L.
        Transfusion-related acute lung injury and the ICU.
        Crit Care Clin. 2005; 21: 479-495
        • Despotis G.
        • Zhang L.
        • Lublin D.
        Transfusion risks and transfusion-related pro-inflammatory responses.
        Hematol Oncol Clin North Am. 2007; 21: 147-161
        • Toy P.
        • Popovsky M.
        • Abraham E.
        • et al.
        Transfusion-related acute lung injury: definition and review.
        Crit Care Med. 2005; 33: 721-726
        • Silliman C.
        The two-event model of transfusion-related acute lung injury.
        Crit Care Med. 2006; 34: S124-S131
        • Wright S.
        • Snowden C.
        • Athey S.
        • et al.
        Acute lung injury after ruptured abdominal aortic aneurysm repair: the effect of excluding donations from females from the production of fresh frozen plasma.
        Crit Care Med. 2008; 36: 1796-1802
        • Jha V.
        • Gutierrez G.
        Severe sepsis and septic shock should blood be transfused to raise mixed venous oxygen saturation?.
        Chest. 2007; 131: 1267-1269
        • Chang H.
        • Hall G.
        • Geerts W.
        • et al.
        Allogeneic red blood cell transfusion is an independent risk factor for the development of postoperative bacterial infection.
        Vox Sang. 2000; 78: 13-18
        • Moore F.
        • Moore E.
        • Sauaia A.
        Blood transfusion: an independent risk factor for postinjury multiple organ failure.
        Arch Surg. 1997; 132: 620-625
        • Malone D.
        • Dunne J.
        • Tracy K.
        • et al.
        Blood transfusion, independent of shock severity, is associated with worse outcome in trauma.
        J Trauma. 2003; 54: 898-907
        • Engoren M.
        • Habib R.
        • Zacharias A.
        • et al.
        Effect of blood transfusion on long-term survival after cardiac operation.
        Ann Thorac Surg. 2002; 74: 1180-1186
        • Vincent J.
        • Baron J.
        • Reinhart K.
        • et al.
        Anemia and blood transfusion in critically ill patients.
        JAMA. 2002; 288: 1499-1507
        • Fernandes C.
        • Akamine N.
        • De Marco F.
        • et al.
        Red blood cell transfusion does not increase oxygen consumption in critically ill septic patients.
        Crit Care. 2001; 5: 362-367
        • Shah D.
        • Gottlieb M.
        • Rahm R.
        • et al.
        Failure of red blood cell transfusion to increase oxygen transport or mixed venous PO2 in injured patients.
        J Trauma. 1982; 22: 741-746
        • Suttner S.
        • Piper S.
        • Kumle B.
        • et al.
        The influence of allogeneic red blood cell transfusion compared with 100% oxygen ventilation on systemic oxygen transport and skeletal muscle oxygen tension after cardiac surgery.
        Anesth Analg. 2004; 99: 2-11
        • Greenwalt T.
        • Buckwalter J.
        • Desforges J.
        • et al.
        Consensus conference: perioperative red blood cell transfusion.
        JAMA. 1988; 260: 2700-2703