Advertisement
Review Article| Volume 26, ISSUE 2, P393-408, April 2010

Mechanisms, Detection, and Potential Management of Microcirculatory Disturbances in Sepsis

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Matot I.
        • Sprung C.L.
        Definition of sepsis.
        Intensive Care Med. 2001; 27: S3-S9
        • Angus D.C.
        • Linde-Zwirble W.T.
        • Lidicker J.
        • et al.
        Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care.
        Crit Care Med. 2001; 29: 1303-1310
        • Rivers E.
        • Nguyen B.
        • Havstad S.
        • et al.
        Early goal-directed therapy in the treatment of severe sepsis and septic shock.
        N Engl J Med. 2001; 345: 1368-1377
        • Dellinger R.P.
        • Levy M.M.
        • Carlet J.M.
        • et al.
        Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008.
        Crit Care Med. 2008; 36: 296-327
        • Ince C.
        The microcirculation is the motor of sepsis.
        Crit Care. 2005; 9: S13-S19
        • Vincent J.L.
        • De Backer D.
        Microvascular dysfunction as a cause of organ dysfunction in severe sepsis.
        Crit Care. 2005; 9: S9-12
        • Sakr Y.
        • Dubois M.J.
        • De Backer D.
        • et al.
        Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock.
        Crit Care Med. 2004; 32: 1825-1831
        • Trzeciak S.
        • Dellinger R.P.
        • Parrillo J.E.
        • et al.
        Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival.
        Ann Emerg Med. 2007; 49 (98 e1–2): 88-98
        • Trzeciak S.
        • Rivers E.P.
        Clinical manifestations of disordered microcirculatory perfusion in severe sepsis.
        Crit Care. 2005; 9: S20-S26
        • Ellis C.G.
        • Jagger J.
        • Sharpe M.
        The microcirculation as a functional system.
        Crit Care. 2005; 9: S3-S8
        • Aird W.C.
        The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome.
        Blood. 2003; 101: 3765-3777
        • Lush C.W.
        • Kvietys P.R.
        Microvascular dysfunction in sepsis.
        Microcirculation. 2000; 7: 83-101
        • Krejci V.
        • Hiltebrand L.B.
        • Sigurdsson G.H.
        Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis.
        Crit Care Med. 2006; 34: 1456-1463
        • Trzeciak S.
        • McCoy J.V.
        • Dellinger P.R.
        • et al.
        Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis.
        Intensive Care Med. 2008; 34: 2210-2217
        • Astiz M.E.
        • DeGent G.E.
        • Lin R.Y.
        • et al.
        Microvascular function and rheologic changes in hyperdynamic sepsis.
        Crit Care Med. 1995; 23: 265-271
        • Astiz M.E.
        • Rackow E.C.
        • Falk J.L.
        • et al.
        Oxygen delivery and consumption in patients with hyperdynamic septic shock.
        Crit Care Med. 1987; 15: 26-28
        • Schouten M.
        • Wiersinga W.J.
        • Levi M.
        • et al.
        Inflammation, endothelium, and coagulation in sepsis.
        J Leukoc Biol. 2008; 83: 536-545
        • Diehl J.L.
        • Borgel D.
        Sepsis and coagulation.
        Curr Opin Crit Care. 2005; 11: 454-460
        • Faust S.N.
        • Levin M.
        • Harrison O.B.
        • et al.
        Dysfunction of endothelial protein C activation in severe meningococcal sepsis.
        N Engl J Med. 2001; 345: 408-416
        • Looney M.R.
        • Matthay M.A.
        Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury.
        Crit Care. 2006; 10: 239
        • Kanji S.
        • Devlin J.W.
        • Piekos K.A.
        • et al.
        Recombinant human activated protein C, drotrecogin alfa (activated): a novel therapy for severe sepsis.
        Pharmacotherapy. 2001; 21: 1389-1402
        • Martin G.
        • Brunkhorst F.M.
        • Janes J.M.
        • et al.
        The international PROGRESS registry of patients with severe sepsis: drotrecogin alfa (activated) use and patient outcomes.
        Crit Care. 2009; 13: R103
        • De Backer D.
        • Verdant C.
        • Chierego M.
        • et al.
        Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis.
        Crit Care Med. 2006; 34: 1918-1924
        • Piagnerelli M.
        • Boudjeltia K.Z.
        • Vanhaeverbeek M.
        • et al.
        Red blood cell rheology in sepsis.
        Intensive Care Med. 2003; 29: 1052-1061
        • Chien S.
        Rheology in the microcirculation in normal and low flow states.
        Adv Shock Res. 1982; 8: 71-80
        • Hinshaw L.B.
        Sepsis/septic shock: participation of the microcirculation: an abbreviated review.
        Crit Care Med. 1996; 24: 1072-1078
        • Secchi M.E.
        • Sulli A.
        • Pizzorni C.
        • et al.
        Reumatismo. 2009; 61 ([in Italian]): 34-40
        • De Backer D.
        OPS techniques.
        Minerva Anestesiol. 2003; 69: 388-391
        • Harris A.G.
        • Sinitsina I.
        • Messmer K.
        The cytoscan model E-II, a new reflectance microscope for intravital microscopy: comparison with the standard fluorescence method.
        J Vasc Res. 2000; 37: 469-476
        • Boerma E.C.
        • Mathura K.R.
        • van der Voort P.H.
        • et al.
        Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study.
        Crit Care. 2005; 9: R601-R606
        • Hiltebrand L.B.
        • Krejci V.
        • Sigurdsson G.H.
        Effects of dopamine, dobutamine, and dopexamine on microcirculatory blood flow in the gastrointestinal tract during sepsis and anesthesia.
        Anesthesiology. 2004; 100: 1188-1197
        • Creteur J.
        • De Backer D.
        • Sakr Y.
        • et al.
        Sublingual capnometry tracks microcirculatory changes in septic patients.
        Intensive Care Med. 2006; 32: 516-523
        • Fries M.
        • Weil M.H.
        • Sun S.
        • et al.
        Increases in tissue Pco2 during circulatory shock reflect selective decreases in capillary blood flow.
        Crit Care Med. 2006; 34: 446-452
        • Marik P.E.
        Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion.
        Curr Opin Crit Care. 2005; 11: 245-251
        • De Backer D.
        • Hollenberg S.
        • Boerma C.
        • et al.
        How to evaluate the microcirculation: report of a round table conference.
        Crit Care. 2007; 11: R101
        • Piper R.D.
        • Pitt-Hyde M.
        • Li F.
        • et al.
        Microcirculatory changes in rat skeletal muscle in sepsis.
        Am J Respir Crit Care Med. 1996; 154: 931-937
        • Farquhar I.
        • Martin C.M.
        • Lam C.
        • et al.
        Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis.
        J Surg Res. 1996; 61: 190-196
        • Hiltebrand L.B.
        • Krejci V.
        • Banic A.
        • et al.
        Dynamic study of the distribution of microcirculatory blood flow in multiple splanchnic organs in septic shock.
        Crit Care Med. 2000; 28: 3233-3241
        • Hiltebrand L.B.
        • Krejci V.
        • tenHoevel M.E.
        • et al.
        Redistribution of microcirculatory blood flow within the intestinal wall during sepsis and general anesthesia.
        Anesthesiology. 2003; 98: 658-669
        • Krejci V.
        • Hiltebrand L.
        • Banic A.
        • et al.
        Continuous measurements of microcirculatory blood flow in gastrointestinal organs during acute haemorrhage.
        Br J Anaesth. 2000; 84: 468-475
        • Koo A.
        • Tse T.F.
        • Yu D.Y.
        Hepatic microvascular effects of terbutaline in experimental cardiogenic shock in rats.
        Clin Exp Pharmacol Physiol. 1979; 6: 495-506
        • Fries M.
        • Weil M.H.
        • Chang Y.T.
        • et al.
        Microcirculation during cardiac arrest and resuscitation.
        Crit Care Med. 2006; 34: S454-S457
        • Neviere R.
        • Mathieu D.
        • Chagnon J.L.
        • et al.
        Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis.
        Am J Respir Crit Care Med. 1996; 153: 191-195
        • Kubli S.
        • Boegli Y.
        • Ave A.D.
        • et al.
        Endothelium-dependent vasodilation in the skin microcirculation of patients with septic shock.
        Shock. 2003; 19: 274-280
        • Marik P.E.
        Sublingual capnography: a clinical validation study.
        Chest. 2001; 120: 923-927
        • Marik P.E.
        • Bankov A.
        Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients.
        Crit Care Med. 2003; 31: 818-822
        • De Backer D.
        • Creteur J.
        • Preiser J.C.
        • et al.
        Microvascular blood flow is altered in patients with sepsis.
        Am J Respir Crit Care Med. 2002; 166: 98-104
        • Creteur J.
        • Carollo T.
        • Soldati G.
        • et al.
        The prognostic value of muscle StO2 in septic patients.
        Intensive Care Med. 2007; 33: 1549-1556
        • Krejci V.
        • Hiltebrand L.B.
        • Jakob S.M.
        • et al.
        Vasopressin in septic shock: effects on pancreatic, renal, and hepatic blood flow.
        Crit Care. 2007; 11: R129
        • Hiltebrand L.B.
        • Krejci V.
        • Jakob S.M.
        • et al.
        Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock.
        Anesthesiology. 2007; 106: 1156-1167
        • Duranteau J.
        • Sitbon P.
        • Teboul J.L.
        • et al.
        Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock.
        Crit Care Med. 1999; 27: 893-900
        • De Backer D.
        • Creteur J.
        • Silva E.
        • et al.
        Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best?.
        Crit Care Med. 2003; 31: 1659-1667
        • Jhanji S.
        • Stirling S.
        • Patel N.
        • et al.
        The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock.
        Crit Care Med. 2009; 37: 1961-1966
        • Neviere R.
        • Mathieu D.
        • Chagnon J.L.
        • et al.
        The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients.
        Am J Respir Crit Care Med. 1996; 154: 1684-1688
        • Ruokonen E.
        • Takala J.
        • Kari A.
        • et al.
        Regional blood flow and oxygen transport in septic shock.
        Crit Care Med. 1993; 21: 1296-1303
        • van Haren F.M.
        • Rozendaal F.W.
        • van der Hoeven J.G.
        The effect of vasopressin on gastric perfusion in catecholamine-dependent patients in septic shock.
        Chest. 2003; 124: 2256-2260
        • Dunser M.W.
        • Mayr A.J.
        • Ulmer H.
        • et al.
        Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study.
        Circulation. 2003; 107: 2313-2319
        • Gutierrez G.
        • Clark C.
        • Brown S.D.
        • et al.
        Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients.
        Am J Respir Crit Care Med. 1994; 150: 324-329
        • Lange M.
        • Enkhbaatar P.
        • Nakano Y.
        • et al.
        Role of nitric oxide in shock: the large animal perspective.
        Front Biosci. 2009; 14: 1979-1989
        • Pullamsetti S.S.
        • Maring D.
        • Ghofrani H.A.
        • et al.
        Effect of nitric oxide synthase (NOS) inhibition on macro- and microcirculation in a model of rat endotoxic shock.
        Thromb Haemost. 2006; 95: 720-727
        • Lopez A.
        • Lorente J.A.
        • Steingrub J.
        • et al.
        Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock.
        Crit Care Med. 2004; 32: 21-30
        • Assadi A.
        • Desebbe O.
        • Kaminski C.
        • et al.
        Effects of sodium nitroprusside on splanchnic microcirculation in a resuscitated porcine model of septic shock.
        Br J Anaesth. 2008; 100: 55-65
        • Gundersen Y.
        • Corso C.O.
        • Leiderer R.
        • et al.
        The nitric oxide donor sodium nitroprusside protects against hepatic microcirculatory dysfunction in early endotoxaemia.
        Intensive Care Med. 1998; 24: 1257-1263
        • Spronk P.E.
        • Ince C.
        • Gardien M.J.
        • et al.
        Nitroglycerin in septic shock after intravascular volume resuscitation.
        Lancet. 2002; 360: 1395-1396
        • Boerma E.C.
        • Koopmans M.
        • Konijn A.
        • et al.
        Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial.
        Crit Care Med. 2009; 38: 93-100
        • Radermacher P.
        • Buhl R.
        • Santak B.
        • et al.
        The effects of prostacyclin on gastric intramucosal pH in patients with septic shock.
        Intensive Care Med. 1995; 21: 414-421
        • Eichelbronner O.
        • Reinelt H.
        • Wiedeck H.
        • et al.
        Aerosolized prostacyclin and inhaled nitric oxide in septic shock—different effects on splanchnic oxygenation?.
        Intensive Care Med. 1996; 22: 880-887
        • Kimura D.
        • Totapally B.R.
        • Raszynski A.
        • et al.
        The effects of CO2 on cytokine concentrations in endotoxin-stimulated human whole blood.
        Crit Care Med. 2008; 36: 2823-2827
        • Hanly E.J.
        • Fuentes J.M.
        • Aurora A.R.
        • et al.
        Carbon dioxide pneumoperitoneum prevents mortality from sepsis.
        Surg Endosc. 2006; 20: 1482-1487
        • Hanly E.J.
        • Bachman S.L.
        • Marohn M.R.
        • et al.
        Carbon dioxide pneumoperitoneum-mediated attenuation of the inflammatory response is independent of systemic acidosis.
        Surgery. 2005; 137: 559-566
        • Gnaegi A.
        • Feihl F.
        • Boulat O.
        • et al.
        Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia.
        Intensive Care Med. 2009; 35: 1297-1304
        • Taccone F.S.
        • Castanares-Zapatero D.
        • Peres-Bota D.
        • et al.
        Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock.
        Neurocrit Care. 2010; 12: 35-42
        • Conrad S.A.
        • Dietrich K.A.
        • Hebert C.A.
        • et al.
        Effect of red cell transfusion on oxygen consumption following fluid resuscitation in septic shock.
        Circ Shock. 1990; 31: 419-429
        • Sakr Y.
        • Chierego M.
        • Piagnerelli M.
        • et al.
        Microvascular response to red blood cell transfusion in patients with severe sepsis.
        Crit Care Med. 2007; 35: 1639-1644
        • Buchele G.L.
        • Silva E.
        • Ospina-Tascon G.A.
        • et al.
        Effects of hydrocortisone on microcirculatory alterations in patients with septic shock.
        Crit Care Med. 2009; 37: 1341-1347
        • Krysztopik R.J.
        • Bentley F.R.
        • Wilson M.A.
        • et al.
        Vasomotor response to pentoxifylline mediates improved renal blood flow to bacteremia.
        J Surg Res. 1996; 63: 17-22
        • Krysztopik R.J.
        • Matheson P.J.
        • Spain D.A.
        • et al.
        Lazaroid and pentoxifylline suppress sepsis-induced increases in renal vascular resistance via altered arachidonic acid metabolism.
        J Surg Res. 2000; 93: 75-81
        • Piechota M.
        • Banach M.
        • Irzmanski R.
        • et al.
        Plasma endothelin-1 levels in septic patients.
        J Intensive Care Med. 2007; 22: 232-239
        • Sanai L.
        • Haynes W.G.
        • MacKenzie A.
        • et al.
        Endothelin production in sepsis and the adult respiratory distress syndrome.
        Intensive Care Med. 1996; 22: 52-56
        • Schuetz P.
        • Christ-Crain M.
        • Morgenthaler N.G.
        • et al.
        Circulating precursor levels of endothelin-1 and adrenomedullin, two endothelium-derived, counteracting substances, in sepsis.
        Endothelium. 2007; 14: 345-351
        • Krejci V.
        • Hiltebrand L.B.
        • Erni D.
        • et al.
        Endothelin receptor antagonist bosentan improves microcirculatory blood flow in splanchnic organs in septic shock.
        Crit Care Med. 2003; 31: 203-210
        • Andersson A.
        • Fenhammar J.
        • Frithiof R.
        • et al.
        Mixed endothelin receptor antagonism with tezosentan improves intestinal microcirculation in endotoxemic shock.
        J Surg Res. 2008; 149: 138-147
        • Fenhammar J.
        • Andersson A.
        • Frithiof R.
        • et al.
        The endothelin receptor antagonist tezosentan improves renal microcirculation in a porcine model of endotoxemic shock.
        Acta Anaesthesiol Scand. 2008; 52: 1385-1393