Advertisement
Review Article| Volume 26, ISSUE 3, P443-450, July 2010

The Evolutionary Role of Nutrition and Metabolic Support in Critical Illness

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Martindale R.G.
        • McClave S.A.
        • Vanek V.W.
        • et al.
        Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition.
        Crit Care Med. 2009; 37: 1757-1761
        • Scurlock C.
        • Mechanick J.I.
        Early nutrition support in the intensive care unit: a US perspective.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 152-155
        • Kreymann K.G.
        Early nutrition support in critical care: a European perspective.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 156-159
        • Chiolero R.
        • Revelly J.P.
        • Tappy L.
        Energy metabolism in sepsis and injury.
        Nutrition. 1997; 13: 45S-51S
        • Jequier E.
        • Acheson K.
        • Schutz Y.
        Assessment of energy expenditure and fuel utilization in man.
        Annu Rev Nutr. 1987; 7: 187-208
        • Kinney J.M.
        • Long C.L.
        • Gump F.E.
        • et al.
        Tissue composition of weight loss in surgical patients. I. Elective operation.
        Ann Surg. 1968; 168: 459-474
        • Weissman C.
        • Kemper M.
        Assessing hypermetabolism and hypometabolism in the postoperative critically ill patient.
        Chest. 1992; 102: 1566-1571
        • Kemper M.
        • Weissman C.
        • Hyman A.I.
        Caloric requirements and supply in critically ill surgical patients.
        Crit Care Med. 1992; 20: 344-348
        • Brandi L.S.
        • Santini L.
        • Bertolini R.
        • et al.
        Energy expenditure and severity of injury and illness indices in multiple trauma patients.
        Crit Care Med. 1999; 27: 2684-2689
        • Bruder N.
        • Dumont J.C.
        • Francois G.
        Evolution of energy expenditure and nitrogen excretion in severe head-injured patients.
        Crit Care Med. 1991; 19: 43-48
        • Moore R.
        • Najarian M.P.
        • Konvolinka C.W.
        Measured energy expenditure in severe head trauma.
        J Trauma. 1989; 29: 1633-1636
        • Kreymann G.
        • Grosser S.
        • Buggisch P.
        • et al.
        Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock.
        Crit Care Med. 1993; 21: 1012-1019
        • Zauner C.
        • Schuster B.I.
        • Schneeweiss B.
        Similar metabolic responses to standardized total parenteral nutrition of septic and nonseptic critically ill patients.
        Am J Clin Nutr. 2001; 74: 265-270
        • McCall M.
        • Jeejeebhoy K.
        • Pencharz P.
        • et al.
        Effect of neuromuscular blockade on energy expenditure in patients with severe head injury.
        JPEN J Parenter Enteral Nutr. 2003; 27: 27-35
        • Hoher J.A.
        • Zimermann Teixeira P.J.
        • Hertz F.
        • et al.
        A comparison between ventilation modes: how does activity level affect energy expenditure estimates?.
        JPEN J Parenter Enteral Nutr. 2008; 32: 176-183
        • Jeevanandam M.
        • Young D.H.
        • Schiller W.R.
        Obesity and the metabolic response to severe multiple trauma in man.
        J Clin Invest. 1991; 87: 262-269
        • Watters J.M.
        • Redmond M.L.
        • Desai D.
        • et al.
        Effects of age and body composition on the metabolic responses to elective colon resection.
        Ann Surg. 1990; 212: 213-220
        • Van den Berghe G.
        Novel insights into the neuroendocrinology of critical illness.
        Eur J Endocrinol. 2000; 143: 1-13
        • Reid C.L.
        • Campbell I.T.
        • Little R.A.
        Muscle wasting and energy balance in critical illness.
        Clin Nutr. 2004; 23: 273-280
        • Soop A.
        • Albert J.
        • Weitzberg E.
        • et al.
        Complement activation, endothelin-1 and neuropeptide Y in relation to the cardiovascular response to endotoxin-induced systemic inflammation in healthy volunteers.
        Acta Anaesthesiol Scand. 2004; 48: 74-81
        • Hotchkiss R.S.
        • Karl I.E.
        The pathophysiology and treatment of sepsis.
        N Engl J Med. 2003; 348: 138-150
        • Brealey D.
        • Brand M.
        • Hargreaves I.
        • et al.
        Association between mitochondrial dysfunction and severity and outcome of septic shock.
        Lancet. 2002; 360: 219-223
        • Hotchkiss R.S.
        • Tinsley K.W.
        • Swanson P.E.
        • et al.
        Endothelial cell apoptosis in sepsis.
        Crit Care Med. 2002; 30: S225-S228
        • Hotchkiss R.S.
        • Swanson P.E.
        • Freeman B.D.
        • et al.
        Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction.
        Crit Care Med. 1999; 27: 1230-1251
        • Levy R.J.
        • Piel D.A.
        • Acton P.D.
        • et al.
        Evidence of myocardial hibernation in the septic heart.
        Crit Care Med. 2005; 33: 2752-2756
        • Schiffl H.
        • Fischer R.
        Five-year outcomes of severe acute kidney injury requiring renal replacement therapy.
        Nephrol Dial Transplant. 2008; 23: 2235-2241
        • Wan L.
        • Bagshaw S.M.
        • Langenberg C.
        • et al.
        Pathophysiology of septic acute kidney injury: what do we really know?.
        Crit Care Med. 2008; 36: S198-S203
        • Boekstegers P.
        • Weidenhofer S.
        • Kapsner T.
        • et al.
        Skeletal muscle partial pressure of oxygen in patients with sepsis.
        Crit Care Med. 1994; 22: 640-650
        • Singer M.
        • De Santis V.
        • Vitale D.
        • et al.
        Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation.
        Lancet. 2004; 364: 545-548
        • Mongardon N.
        • Dyson A.
        • Singer M.
        Is MOF an outcome parameter or a transient, adaptive state in critical illness?.
        Curr Opin Crit Care. 2009; 15: 431-436
        • Hayes M.A.
        • Timmins A.C.
        • Yau E.H.
        • et al.
        Elevation of systemic oxygen delivery in the treatment of critically ill patients.
        N Engl J Med. 1994; 330: 1717-1722
        • Kao C.C.
        • Guntupalli K.K.
        • Bandi V.
        • et al.
        Whole-body CO2 production as an index of the metabolic response to sepsis.
        Shock. 2009; 32: 23-28
        • Gattinoni L.
        • Brazzi L.
        • Pelosi P.
        • et al.
        A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group.
        N Engl J Med. 1995; 333: 1025-1032
        • Takala J.
        • Ruokonen E.
        • Webster N.R.
        • et al.
        Increased mortality associated with growth hormone treatment in critically ill adults.
        N Engl J Med. 1999; 341: 785-792
        • Acker C.G.
        • Singh A.R.
        • Flick R.P.
        • et al.
        A trial of thyroxine in acute renal failure.
        Kidney Int. 2000; 57: 293-298
        • Dvir D.
        • Cohen J.
        • Singer P.
        Computerized energy balance and complications in critically ill patients: an observational study.
        Clin Nutr. 2006; 25: 37-44
        • Rubinson L.
        • Diette G.B.
        • Song X.
        • et al.
        Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit.
        Crit Care Med. 2004; 32: 350-357
        • Villet S.
        • Chiolero R.L.
        • Bollmann M.D.
        • et al.
        Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients.
        Clin Nutr. 2005; 24: 502-509
        • Barr J.
        • Hecht M.
        • Flavin K.E.
        • et al.
        Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol.
        Chest. 2004; 125: 1446-1457
        • Martin C.M.
        • Doig G.S.
        • Heyland D.K.
        • et al.
        Multicenter, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT).
        CMAJ. 2004; 170: 197-204
        • Faisy C.
        • Lerolle N.
        • Dachraoui F.
        • et al.
        Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation.
        Br J Nutr. 2009; 101: 1079-1087
        • Griffiths R.D.
        Too much of a good thing: the curse of overfeeding.
        Crit Care. 2007; 11: 176
        • Dissanaike S.
        • Shelton M.
        • Warner K.
        • et al.
        The risk for bloodstream infections is associated with increased parenteral caloric intake in patients receiving parenteral nutrition.
        Crit Care. 2007; 11: R114