Advertisement
Review Article| Volume 26, ISSUE 3, P501-514, July 2010

Fish Oil in Critical Illness: Mechanisms and Clinical Applications

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Simopoulos A.P.
        Essential fatty acids in health and chronic disease.
        Am J Clin Nutr. 1999; 70 (560S–9S)
        • Angus D.C.
        • Linde-Zwirble W.T.
        • Lidicker J.
        • et al.
        Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care.
        Crit Care Med. 2001; 29: 1303-1310
        • Wheeler A.P.
        • Bernard G.R.
        Acute lung injury and the acute respiratory distress syndrome: a clinical review.
        Lancet. 2007; 369: 1553-1564
        • Cohen J.
        The immunopathogenesis of sepsis.
        Nature. 2002; 420: 885-891
        • Hotchkiss R.S.
        • Karl I.E.
        The pathophysiology and treatment of sepsis.
        N Engl J Med. 2003; 348: 138-150
        • Volk H.D.
        • Reinke P.
        • Docke W.D.
        Clinical aspects: from systemic inflammation to immunoparalysis.
        Chem Immunol. 2000; 74: 162-177
        • Calder P.C.
        N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic.
        Lipids. 2003; 38: 343-352
        • Stubbs C.D.
        • Smith A.D.
        The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function.
        Biochim Biophys Acta. 1984; 779: 89-137
        • Murphy M.G.
        Dietary fatty acids and membrane protein function.
        J Nutr Biochem. 1990; 1: 68-79
        • Calder P.C.
        The relationship between the fatty acid composition of immune cells and their function.
        Prostaglandins Leukot Essent Fatty Acids. 2008; 79: 101-108
        • Bulger E.M.
        • Maier R.V.
        Lipid mediators in the pathophysiology of critical illness.
        Crit Care Med. 2000; 28: N27-N36
        • Palombo J.D.
        • Lydon E.E.
        • Chen P.L.
        • et al.
        Fatty acid composition of lung, macrophage, and surfactant phospholipids after short-term enteral feeding with n-3 lipids.
        Lipids. 1994; 29: 643-649
        • Tilley S.L.
        • Coffman T.M.
        • Koller B.H.
        Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes.
        J Clin Invest. 2001; 108: 15-23
        • Harris S.G.
        • Padilla J.
        • Koumas L.
        • et al.
        Prostaglandins as modulators of immunity.
        Trends Immunol. 2002; 23: 144-150
        • Petrak R.A.
        • Balk R.A.
        • Bone R.C.
        Prostaglandins, cyclo-oxygenase inhibitors, and thromboxane synthetase inhibitors in the pathogenesis of multiple systems organ failure.
        Crit Care Clin. 1989; 5: 303-314
        • Prescott S.M.
        • Zimmerman G.A.
        • McIntyre T.M.
        Platelet-activating factor.
        J Biol Chem. 1990; 265: 17381-17384
        • Marangoni F.
        • Angeli M.T.
        • Colli S.
        • et al.
        Changes of n-3 and n-6 fatty acids in plasma and circulating cells of normal subjects, after prolonged administration of 20:5 (EPA) and 22:6 (DHA) ethyl esters and prolonged washout.
        Biochim Biophys Acta. 1993; 1210: 55-62
        • Lee T.H.
        • Menica-Huerta J.M.
        • Shih C.
        • et al.
        Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotriene B5 and the double lipoxygenase product.
        J Biol Chem. 1984; 259: 2383-2389
        • Golman D.W.
        • Goetzl E.J.
        Human neutrophil chemotactic and degranulating activites of leukotriene B5 (LTB5) derived from eicosapentaenoic acid.
        Biochem Biophys Res Commun. 1983; 117: 282-288
        • Lee T.H.
        • Hoover R.L.
        • Williams J.D.
        • et al.
        Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function.
        N Engl J Med. 1985; 312: 1217-1224
        • Whelan J.
        • Broughton K.S.
        • Kinsella J.E.
        The comparative effects of dietary alpha-linolenic acid and fish oil on 4- and 5-series leukotriene formation in vivo.
        Lipids. 1991; 26: 119-126
        • Kang J.X.
        • Wang J.
        • Wu L.
        • et al.
        Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids.
        Nature. 2004; 427: 504
        • Schaefer M.B.
        • Ott J.
        • Mohr A.
        • et al.
        Immunomodulation by n-3- versus n-6-rich lipid emulsions in murine acute lung injury–role of platelet-activating factor receptor.
        Crit Care Med. 2007; 35: 544-554
        • Mayer K.
        • Kiessling A.
        • Ott J.
        • et al.
        Acute lung injury is reduced in fat-1 mice endogenously synthesizing n-3 fatty acids.
        Am J Respir Crit Care Med. 2009; 179: 474-483
        • Ariel A.
        • Serhan C.N.
        Resolvins and protectins in the termination program of acute inflammation.
        Trends Immunol. 2007; 28: 176-183
        • Serhan C.N.
        • Yang R.
        • Martinod K.
        • et al.
        Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions.
        J Exp Med. 2009; 206: 15-23
        • Serhan C.N.
        Systems approach to inflammation resolution: identification of novel anti-inflammatory and proresolving mediators.
        J Thromb Haemost. 2009; 7: 44-48
        • Serhan C.N.
        • Clish C.B.
        • Brannon J.
        • et al.
        Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing.
        J Exp Med. 2000; 192: 1197-1204
        • Serhan C.N.
        • Hong S.
        • Gronert K.
        • et al.
        Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals.
        J Exp Med. 2002; 196: 1025-1037
        • Serhan C.N.
        • Chiang N.
        • Van Dyke T.E.
        Resolving inflammation: dual anti-inflammatory and proresolution lipid mediators.
        Nat Rev Immunol. 2008; 8: 349-361
        • Levy B.D.
        • Kohli P.
        • Gotlinger K.
        • et al.
        Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness.
        J Immunol. 2007; 178: 496-502
        • Haworth O.
        • Cernadas M.
        • Yang R.
        • et al.
        Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation.
        Nat Immunol. 2008; 9: 873-879
        • Arita M.
        • Yoshida M.
        • Hong S.
        • et al.
        Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.
        Proc Natl Acad Sci U S A. 2005; 102: 7671-7676
        • Arita M.
        • Bianchini F.
        • Aliberti J.
        • et al.
        Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1.
        J Exp Med. 2005; 201: 713-722
        • Arita M.
        • Ohira T.
        • Sun Y.P.
        • et al.
        Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation.
        J Immunol. 2007; 178: 3912-3917
        • Spite M.
        • Norling L.V.
        • Summers L.
        • et al.
        Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis.
        Nature. 2009; 461: 1287-1291
        • Anand R.G.
        • Alkadri M.
        • Lavie C.J.
        • et al.
        The role of fish oil in arrhythmia prevention.
        J Cardiopulm Rehabil Prev. 2008; 28: 92-98
        • Calo L.
        • Bianconi L.
        • Colivicchi F.
        • et al.
        N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial.
        J Am Coll Cardiol. 2005; 45: 1723-1728
        • Heidt M.C.
        • Vician M.
        • Stracke S.K.
        • et al.
        Beneficial effects of intravenously administered N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a prospective randomized study.
        Thorac Cardiovasc Surg. 2009; 57: 276-280
        • O'Keefe Jr., J.H.
        • Abuissa H.
        • Sastre A.
        • et al.
        Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions.
        Am J Cardiol. 2006; 97: 1127-1130
        • Geelen A.
        • Brouwer I.A.
        • Schouten E.G.
        • et al.
        Effects of n-3 fatty acids from fish on premature ventricular complexes and heart rate in humans.
        Am J Clin Nutr. 2005; 81: 416-420
        • Pluess T.T.
        • Hayoz D.
        • Berger M.M.
        • et al.
        Intravenous fish oil blunts the physiological response to endotoxin in healthy subjects.
        Intensive Care Med. 2007; 33: 789-797
        • Michaeli B.
        • Berger M.M.
        • Revelly J.P.
        • et al.
        Effects of fish oil on the neuro-endocrine responses to an endotoxin challenge in healthy volunteers.
        Clin Nutr. 2007; 26: 70-77
        • Berger M.M.
        • Tappy L.
        • Revelly J.P.
        • et al.
        Fish oil after abdominal aorta aneurysm surgery.
        Eur J Clin Nutr. 2008; 62: 1116-1122
        • Mayer K.
        • Seeger W.
        Fish oil in critical illness.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 121-127
        • Singer P.
        • Shapiro H.
        Enteral omega-3 in acute respiratory distress syndrome.
        Curr Opin Clin Nutr Metab Care. 2009; 12: 123-128
        • Pontes-Arruda A.
        • Demichele S.
        • Seth A.
        • et al.
        The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data.
        JPEN J Parenter Enteral Nutr. 2008; 32: 596-605
        • Mancuso P.
        • Whelan J.
        • DeMichele S.J.
        • et al.
        Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats.
        Crit Care Med. 1997; 25: 1198-1206
        • Gadek J.E.
        • DeMichele S.J.
        • Karlstad M.D.
        • et al.
        Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group.
        Crit Care Med. 1999; 27: 1409-1420
        • Singer P.
        • Theilla M.
        • Fisher H.
        • et al.
        Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury.
        Crit Care Med. 2006; 34: 1033-1038
        • Pontes-Arruda A.
        • Aragao A.M.
        • Albuquerque J.D.
        Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock.
        Crit Care Med. 2006; 34: 2325-2333
        • Marik P.E.
        • Zaloga G.P.
        Immunonutrition in critically ill patients: a systematic review and analysis of the literature.
        Intensive Care Med. 2008; 34: 1980-1990
        • Heyland D.K.
        Nutrition clinical practice guidelines 4.1(b) composition of enteral nutrition: fish oils.
        (Available at:) (Accessed January 31, 2009)
        • McClave S.A.
        • Martindale R.G.
        • Vanek V.W.
        • et al.
        Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N)..
        JPEN J Parenter Enteral Nutr. 2009; 33: 277-316
        • Nelson J.L.
        • DeMichele S.J.
        • Pacht E.R.
        • et al.
        Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants on antioxidant status in patients with acute respiratory distress syndrome.
        JPEN J Parenter Enteral Nutr. 2003; 27: 98-104
        • Pacht E.R.
        • DeMichele S.J.
        • Nelson J.L.
        • et al.
        Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome.
        Crit Care Med. 2003; 31: 491-500
        • Calder P.C.
        Immunonutrition in surgical and critically ill patients.
        Br J Nutr. 2007; 98: S133-S139
        • Heyland D.K.
        • Novak F.
        • Drover J.W.
        • et al.
        Should immunonutrition become routine in critically ill patients? A systematic review of the evidence.
        JAMA. 2001; 286: 944-953
        • Stapleton R.D.
        • Martin T.R.
        • Gundel S.J.
        • et al.
        A phase II, randomized, double-blind, placebo-controlled trial of fish oil (eicosapentaenoic acid and docosahexanoic acid) on lung and systemic inflammation in patients with acute lung injury.
        Am J Respir Crit Care Med. 2009; 179: A2169
        • Rice T.
        Trial of omega-3 fatty acid, gamma-linolenic acid and antioxidant supplemention in the management of acute lung injury (Omega). Presented at American Thoracic Society International Conference. San Diego (CA).
        May. 2009; 17
        • Engel J.M.
        • Menges T.
        • Neuhauser C.
        • et al.
        Anasthesiol Intensivmed Notfallmed Schmerzther. 1997; 32 ([in German]): 234-239
        • Weimann A.
        • Bastian L.
        • Bischoff W.E.
        • et al.
        Influence of arginine, omega-3 fatty acids and nucleotide-supplemented enteral support on systemic inflammatory response syndrome and multiple organ failure in patients after severe trauma.
        Nutrition. 1998; 14: 165-172
        • Saffle J.R.
        • Wiebke G.
        • Jennings K.
        • et al.
        Randomized trial of immune-enhancing enteral nutrition in burn patients.
        J Trauma. 1997; 42 ([discussion: 800–2]): 793-800
        • Wibbenmeyer L.A.
        • Mitchell M.A.
        • Newel I.M.
        • et al.
        Effect of a fish oil and arginine-fortified diet in thermally injured patients.
        J Burn Care Res. 2006; 27: 694-702
        • Cerra F.B.
        • Lehman S.
        • Konstantinides N.
        • et al.
        Effect of enteral nutrient on in vitro tests of immune function in ICU patients: a preliminary report.
        Nutrition. 1990; 6 ([discussion: 96–8]): 84-87
        • Bower R.H.
        • Cerra F.B.
        • Bershadsky B.
        • et al.
        Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial.
        Crit Care Med. 1995; 23: 436-449
        • Galban C.
        • Montejo J.C.
        • Mesejo A.
        • et al.
        An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients.
        Crit Care Med. 2000; 28: 643-648
        • Suchner U.
        • Katz D.P.
        • Furst P.
        • et al.
        Impact of sepsis, lung injury, and the role of lipid infusion on circulating prostacyclin and thromboxane A(2).
        Intensive Care Med. 2002; 28: 122-129
        • Calder P.C.
        Rationale for using new lipid emulsions in parenteral nutrition and a review of the trials performed in adults.
        Proc Nutr Soc. 2009; 68: 252-260
        • McCowen K.C.
        • Friel C.
        • Sternberg J.
        • et al.
        Hypocaloric total parenteral nutrition: effectiveness in prevention of hyperglycemia and infectious complications–a randomized clinical trial.
        Crit Care Med. 2000; 28: 3606-3611
        • Battistella F.D.
        • Widergren J.T.
        • Anderson J.T.
        • et al.
        A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition.
        J Trauma. 1997; 43 ([discussion: 58–60]): 52-58
        • Heyland D.K.
        • Dhaliwal R.
        • Drover J.W.
        • et al.
        Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients.
        JPEN J Parenter Enteral Nutr. 2003; 27: 355-373
        • Mayer K.
        • Gokorsch S.
        • Fegbeutel C.
        • et al.
        Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis.
        Am J Respir Crit Care Med. 2003; 167: 1321-1328
        • Mayer K.
        • Fegbeutel C.
        • Hattar K.
        • et al.
        Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation.
        Intensive Care Med. 2003; 29: 1472-1481
        • Heller A.R.
        • Rossler S.
        • Litz R.J.
        • et al.
        Omega-3 fatty acids improve the diagnosis-related clinical outcome.
        Crit Care Med. 2006; 34: 972-979
        • Wang X.
        • Li W.
        • Li N.
        • et al.
        Omega-3 fatty acids-supplemented parenteral nutrition decreases hyperinflammatory response and attenuates systemic disease sequelae in severe acute pancreatitis: a randomized and controlled study.
        JPEN J Parenter Enteral Nutr. 2008; 32: 236-241
        • Friesecke S.
        • Lotze C.
        • Kohler J.
        • et al.
        Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial.
        Intensive Care Med. 2008; 34: 1411-1420
        • Weiss G.
        • Meyer F.
        • Matthies B.
        • et al.
        Immunomodulation by perioperative administration of n-3 fatty acids.
        Br J Nutr. 2002; 87: S89-S94
        • Barbosa V.M.
        • Miles E.A.
        • Calhau C.
        • et al.
        Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial.
        Crit Care. 2010; 14: R5
        • Preiser J.C.
        • Chiolero R.
        • Wernerman J.
        Nutritional papers in ICU patients: what lies between the lines?.
        Intensive Care Med. 2003; 29: 156-166