Advertisement
Review Article| Volume 26, ISSUE 4, P597-602, October 2010

Pulmonary System and Obesity

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Parameswaran K.
        • Todd D.C.
        • Soth M.
        Altered respiratory physiology in obesity.
        Can Respir J. 2006; 13: 203-210
        • Akinnusi M.E.
        • Pineda L.A.
        • El Solh A.A.
        Effect of obesity on intensive care morbidity and mortality: a meta-analysis.
        Crit Care Med. 2008; 36: 151-158
        • Oliveros H.
        • Villamor E.
        Obesity and mortality in critically ill adults: a systematic review and meta-analysis.
        Obesity (Silver Spring). 2008; 16: 515-521
        • Jones R.L.
        • Nzekwu M.M.
        The effects of body mass index on lung volumes.
        Chest. 2006; 130: 827-833
        • Pelosi P.
        • Croci M.
        • Ravagnan I.
        • et al.
        The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia.
        Anesth Analg. 1998; 87: 654-660
        • Koenig S.M.
        Pulmonary complications of obesity.
        Am J Med Sci. 2001; 321: 249-279
        • Malhotra A.
        • Hillman D.
        Obesity and the lung: 3. Obesity, respiration and intensive care.
        Thorax. 2008; 63: 925-931
        • Benedik P.S.
        • Baun M.M.
        • Keus L.
        • et al.
        Effects of body position on resting lung volume in overweight and mildly to moderately obese subjects.
        Respir Care. 2009; 54: 334-339
        • Hedenstierna G.
        • McCarthy G.
        • Bergstrom M.
        Airway closure during mechanical ventilation.
        Anesthesiology. 1976; 44: 114-123
        • Sharp J.T.
        • Henry J.P.
        • Sweany S.K.
        • et al.
        The total work of breathing in normal and obese men.
        J Clin Invest. 1964; 43: 728-739
        • Naimark A.
        • Cherniack R.M.
        Compliance of the respiratory system and its components in health and obesity.
        J Appl Physiol. 1960; 15: 377-382
        • Behazin N.
        • Jones S.B.
        • Cohen R.I.
        • et al.
        Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity.
        J Appl Physiol. 2010; 108: 212-218
        • Hedenstierna G.
        • Santesson J.
        Breathing mechanics, dead space and gas exchange in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation.
        Acta Anaesthesiol Scand. 1976; 20: 248-254
        • Suratt P.M.
        • Wilhoit S.C.
        • Hsiao H.S.
        • et al.
        Compliance of chest wall in obese subjects.
        J Appl Physiol. 1984; 57: 403-407
        • Shelton K.E.
        • Woodson H.
        • Gay S.
        • et al.
        Pharyngeal fat in obstructive sleep apnea.
        Am Rev Respir Dis. 1993; 148: 462-466
        • Bradley T.D.
        • Brown I.G.
        • Grossman R.F.
        • et al.
        Pharyngeal size in snorers, nonsnorers, and patients with obstructive sleep apnea.
        N Engl J Med. 1986; 315: 1327-1331
        • Rubinstein I.
        • Zamel N.
        • DuBarry L.
        • et al.
        Airflow limitation in morbidly obese, nonsmoking men.
        Ann Intern Med. 1990; 112: 828-832
        • Salome C.M.
        • King G.G.
        • Berend N.
        Physiology of obesity and effects on lung function.
        J Appl Physiol. 2010; 108: 206-211
        • Holley H.S.
        • Milic-Emili J.
        • Becklake M.R.
        • et al.
        Regional distribution of pulmonary ventilation and perfusion in obesity.
        J Clin Invest. 1967; 46: 475-481
        • Demedts M.
        Regional distribution of lung volumes and of gas inspired at residual volume: influence of age, body weight and posture.
        Bull Eur Physiopathol Respir. 1980; 16: 271-285
        • Yamane T.
        • Date T.
        • Tokuda M.
        • et al.
        Hypoxemia in inferior pulmonary veins in supine position is dependent on obesity.
        Am J Respir Crit Care Med. 2008; 178: 295-299
        • Ray C.S.
        • Sue D.Y.
        • Bray G.
        • et al.
        Effects of obesity on respiratory function.
        Am Rev Respir Dis. 1983; 128: 501-506
        • Kress J.P.
        • Pohlman A.S.
        • Alverdy J.
        • et al.
        The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest.
        Am J Respir Crit Care Med. 1999; 160: 883-886
        • Bernard G.R.
        • Artigas A.
        • Brigham K.L.
        • et al.
        Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee.
        J Crit Care. 1994; 9: 72-81
        • Malhotra A.
        Low-tidal-volume ventilation in the acute respiratory distress syndrome.
        N Engl J Med. 2007; 357: 1113-1120
        • Dreyfuss D.
        • Saumon G.
        Ventilator-induced lung injury: lessons from experimental studies.
        Am J Respir Crit Care Med. 1998; 157: 294-323
        • Hess D.R.
        • Bigatello L.M.
        The chest wall in acute lung injury/acute respiratory distress syndrome.
        Curr Opin Crit Care. 2008; 14: 94-102
        • The Acute Respiratory Distress Syndrome Network
        Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
        N Engl J Med. 2000; 342: 1301-1308
        • Webb H.H.
        • Tierney D.F.
        Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure.
        Am Rev Respir Dis. 1974; 110: 556-565
        • Pelosi P.
        • Ravagnan I.
        • Giurati G.
        • et al.
        Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis.
        Anesthesiology. 1999; 91: 1221-1231
        • Reinius H.
        • Jonsson L.
        • Gustafsson S.
        • et al.
        Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study.
        Anesthesiology. 2009; 111: 979-987
        • Talab H.F.
        • Zabani I.A.
        • Abdelrahman H.S.
        • et al.
        Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery.
        Anesth Analg. 2009; 109: 1511-1516
        • Valenza F.
        • Vagginelli F.
        • Tiby A.
        • et al.
        Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis.
        Anesthesiology. 2007; 107: 725-732
        • Erlandsson K.
        • Odenstedt H.
        • Lundin S.
        • et al.
        Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery.
        Acta Anaesthesiol Scand. 2006; 50: 833-839
        • Gernoth C.
        • Wagner G.
        • Pelosi P.
        • et al.
        Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome.
        Crit Care. 2009; 13: R59
        • Meade M.O.
        • Cook D.J.
        • Guyatt G.H.
        • et al.
        Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.
        JAMA. 2008; 299: 637-645
        • Burns S.M.
        • Egloff M.B.
        • Ryan B.
        • et al.
        Effect of body position on spontaneous respiratory rate and tidal volume in patients with obesity, abdominal distension and ascites.
        Am J Crit Care. 1994; 3: 102-106
        • Boyce J.R.
        • Ness T.
        • Castroman P.
        • et al.
        A preliminary study of the optimal anesthesia positioning for the morbidly obese patient.
        Obes Surg. 2003; 13: 4-9
        • Hogue Jr., C.W.
        • Stearns J.D.
        • Colantuoni E.
        • et al.
        The impact of obesity on outcomes after critical illness: a meta-analysis.
        Intensive Care Med. 2009; 35: 1152-1170
        • O'Brien Jr., J.M.
        • Phillips G.S.
        • Ali N.A.
        • et al.
        Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury.
        Crit Care Med. 2006; 34: 738-744
        • Morris A.E.
        • Stapleton R.D.
        • Rubenfeld G.D.
        • et al.
        The association between body mass index and clinical outcomes in acute lung injury.
        Chest. 2007; 131: 342-348