Advertisement

Advances in Intracranial Hemorrhage

Subarachnoid Hemorrhage and Intracerebral Hemorrhage
  • Salvatore A. D’Amato
    Affiliations
    Department of Neurosurgery, Neurocritical Care Fellowship Program, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.154, Houston, TX 77030, USA
    Search for articles by this author
  • Tiffany R. Chang
    Correspondence
    Corresponding author. Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.154, Houston, TX 77030.
    Affiliations
    Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.154, Houston, TX 77030, USA

    Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.154, Houston, TX 77030, USA
    Search for articles by this author
Published:September 29, 2022DOI:https://doi.org/10.1016/j.ccc.2022.06.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Etminan N.
        • Chang H.S.
        • Hackenberg K.
        • et al.
        Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis.
        JAMA Neurol. 2019; 76: 588-597
        • Brisman J.L.
        • Song J.K.
        • Newell D.W.
        Cerebral aneurysms.
        N Engl J Med. 2006; 355: 928-939
        • Muller T.B.
        • Vik A.
        • Romundstad P.R.
        • et al.
        Risk factors for unruptured intracranial aneurysms and subarachnoid hemorrhage in a prospective population-based study.
        Stroke. 2019; 50: 2952-2955
        • Yao X.
        • Zhang K.
        • Bian J.
        • et al.
        Alcohol consumption and risk of subarachnoid hemorrhage: a meta-analysis of 14 observational studies.
        Biomed Rep. 2016; 5: 428-436
        • Vlak M.H.
        • Rinkel G.J.
        • Greebe P.
        • et al.
        Lifetime risks for aneurysmal subarachnoid haemorrhage: multivariable risk stratification.
        J Neurol Neurosurg Psychiatry. 2013; 84: 619-623
        • Cagnazzo F.
        • Gambacciani C.
        • Morganti R.
        • et al.
        Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: prevalence, risk of rupture, and management. A systematic review.
        Acta Neurochir (Wien). 2017; 159: 811-821
        • Litchfield W.R.
        • Anderson B.F.
        • Weiss R.J.
        • et al.
        Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism.
        Hypertension. 1998; 31: 445-450
        • Kim S.T.
        • Brinjikji W.
        • Kallmes D.F.
        Prevalence of intracranial aneurysms in patients with Connective tissue diseases: a retrospective study.
        AJNR Am J Neuroradiol. 2016; 37: 1422-1426
        • Huang J.
        • van Gelder J.M.
        The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis.
        Neurosurgery. 2002; 51 ([discussion: 1105–7]): 1101-1105
        • de Oliveira Manoel A.L.
        • Mansur A.
        • Murphy A.
        • et al.
        Aneurysmal subarachnoid haemorrhage from a neuroimaging perspective.
        Crit Care. 2014; 18: 557
        • da Rocha A.J.
        • da Silva C.J.
        • Gama H.P.
        • et al.
        Comparison of magnetic resonance imaging sequences with computed tomography to detect low-grade subarachnoid hemorrhage: role of fluid-attenuated inversion recovery sequence.
        J Comput Assist Tomogr. 2006; 30: 295-303
        • Connolly Jr., E.S.
        • Rabinstein A.A.
        • Carhuapoma J.R.
        • et al.
        Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association.
        Stroke. 2012; 43: 1711-1737
        • Hunt W.E.
        • Hess R.M.
        Surgical risk as related to time of intervention in the repair of intracranial aneurysms.
        J Neurosurg. 1968; 28: 14-20
        • Fisher C.M.
        • Kistler J.P.
        • Davis J.M.
        Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning.
        Neurosurgery. 1980; 6: 1-9
        • Claassen J.
        • Bernardini G.L.
        • Kreiter K.
        • et al.
        Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited.
        Stroke. 2001; 32: 2012-2020
        • Diringer M.N.
        • Bleck T.P.
        • Claude Hemphill 3rd, J.
        • et al.
        Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference.
        Neurocrit Care. 2011; 15: 211-240
        • Behrouz R.
        • Sullebarger J.T.
        • Malek A.R.
        Cardiac manifestations of subarachnoid hemorrhage.
        Expert Rev Cardiovasc Ther. 2011; 9: 303-307
        • Kerro A.
        • Woods T.
        • Chang J.J.
        Neurogenic stunned myocardium in subarachnoid hemorrhage.
        J Crit Care. 2017; 38: 27-34
        • Kilbourn K.J.
        • Levy S.
        • Staff I.
        • et al.
        Clinical characteristics and outcomes of neurogenic stress cadiomyopathy in aneurysmal subarachnoid hemorrhage.
        Clin Neurol Neurosurg. 2013; 115: 909-914
        • Zhao J.
        • Xuan N.X.
        • Cui W.
        • et al.
        Neurogenic pulmonary edema following acute stroke: the progress and perspective.
        Biomed Pharmacother. 2020; 130: 110478
        • Tang C.
        • Zhang T.S.
        • Zhou L.F.
        Risk factors for rebleeding of aneurysmal subarachnoid hemorrhage: a meta-analysis.
        PLoS One. 2014; 9: e99536
        • Molyneux A.J.
        • Kerr R.S.
        • Yu L.M.
        • et al.
        International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion.
        Lancet. 2005; 366: 809-817
        • Molyneux A.J.
        • Birks J.
        • Clarke A.
        • et al.
        The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT).
        Lancet. 2015; 385: 691-697
        • Dodd W.S.
        • Laurent D.
        • Dumont A.S.
        • et al.
        Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review.
        J Am Heart Assoc. 2021; 10: e021845
        • Duan W.
        • Pan Y.
        • Wang C.
        • et al.
        Risk factors and clinical impact of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: analysis from the China national stroke registry.
        Neuroepidemiology. 2018; 50: 128-136
        • Lee H.
        • Perry J.J.
        • English S.W.
        • et al.
        Clinical prediction of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage.
        J Neurosurg. 2018; : 1-8https://doi.org/10.3171/2018.1.JNS172715
        • Foreman B.
        • Claassen J.
        Quantitative EEG for the detection of brain ischemia.
        Crit Care. 2012; 16: 216
        • Claassen J.
        • Mayer S.A.
        • Hirsch L.J.
        Continuous EEG monitoring in patients with subarachnoid hemorrhage.
        J Clin Neurophysiol. 2005; 22: 92-98
        • Claassen J.
        • Hirsch L.J.
        • Frontera J.A.
        • et al.
        Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage.
        Neurocrit Care. 2006; 4: 103-112
        • Bonow R.H.
        • Young C.C.
        • Bass D.I.
        • et al.
        Transcranial Doppler ultrasonography in neurological surgery and neurocritical care.
        Neurosurg Focus. 2019; 47: E2
        • Greenberg E.D.
        • Gobin Y.P.
        • Riina H.
        • et al.
        Role of CT perfusion imaging in the diagnosis and treatment of vasospasm.
        Imaging Med. 2011; 3: 287-297
        • Pickard J.D.
        • Murray G.D.
        • Illingworth R.
        • et al.
        Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial.
        BMJ. 1989; 298: 636-642
        • Petruk K.C.
        • West M.
        • Mohr G.
        • et al.
        Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial.
        J Neurosurg. 1988; 68: 505-517
        • Lakhal K.
        • Hivert A.
        • Alexandre P.L.
        • et al.
        Intravenous milrinone for cerebral vasospasm in subarachnoid hemorrhage: the MILRISPASM controlled Before-after study.
        Neurocrit Care. 2021; 35: 669-679
        • Santos-Teles A.G.
        • Ramalho C.
        • Ramos J.G.R.
        • et al.
        Efficacy and safety of milrinone in the treatment of cerebral vasospasm after subarachnoid hemorrhage: a systematic review.
        Rev Bras Ter Intensiva. 2020; 32 (Eficacia e seguranca da milrinona no tratamento do vasoespasmo cerebral apos hemorragia subaracnoidea: uma revisao sistematica): 592-602
        • Sadan O.
        • Waddel H.
        • Moore R.
        • et al.
        Does intrathecal nicardipine for cerebral vasospasm following subarachnoid hemorrhage correlate with reduced delayed cerebral ischemia? A retrospective propensity score-based analysis.
        J Neurosurg. 2022; 136: 115-124
        • Virani S.S.
        • Alonso A.
        • Benjamin E.J.
        • et al.
        Heart disease and stroke statistics-2020 update: a report from the American heart association.
        Circulation. 2020; 141: e139-e596
        • Javalkar V.
        • Kuybu O.
        • Davis D.
        • et al.
        Factors associated with inpatient mortality after intracerebral hemorrhage: updated information from the United States nationwide inpatient sample.
        J Stroke Cerebrovasc Dis. 2020; 29: 104583
        • Zia E.
        • Hedblad B.
        • Pessah-Rasmussen H.
        • et al.
        Blood pressure in relation to the incidence of cerebral infarction and intracerebral hemorrhage. Hypertensive hemorrhage: debated nomenclature is still relevant.
        Stroke. 2007; 38: 2681-2685
        • Vedicherla S.V.
        • Foo A.S.
        • Sharma V.K.
        • et al.
        The "Blush" sign on computed tomography angiography is an independent predictor of hematoma progression in primary hypertensive hemorrhage.
        J Stroke Cerebrovasc Dis. 2018; 27: 1878-1884
        • van Asch C.J.
        • Luitse M.J.
        • Rinkel G.J.
        • et al.
        Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis.
        Lancet Neurol. 2010; 9: 167-176
        • Pezzini A.
        • Grassi M.
        • Paciaroni M.
        • et al.
        Obesity and the risk of intracerebral hemorrhage: the multicenter study on cerebral hemorrhage in Italy.
        Stroke. 2013; 44: 1584-1589
        • Larsson S.C.
        • Wallin A.
        • Wolk A.
        • et al.
        Differing association of alcohol consumption with different stroke types: a systematic review and meta-analysis.
        BMC Med. 2016; 14: 178
        • Wada R.
        • Aviv R.I.
        • Fox A.J.
        • et al.
        CT angiography "spot sign" predicts hematoma expansion in acute intracerebral hemorrhage.
        Stroke. 2007; 38: 1257-1262
        • Morotti A.
        • Arba F.
        • Boulouis G.
        • et al.
        Noncontrast CT markers of intracerebral hemorrhage expansion and poor outcome: a meta-analysis.
        Neurology. 2020; 95: 632-643
        • Hemphill 3rd, J.C.
        • Greenberg S.M.
        • Anderson C.S.
        • et al.
        Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association.
        Stroke. 2015; 46: 2032-2060
        • Chan E.
        • Anderson C.S.
        • Wang X.
        • et al.
        Significance of intraventricular hemorrhage in acute intracerebral hemorrhage: intensive blood pressure reduction in acute cerebral hemorrhage trial results.
        Stroke. 2015; 46: 653-658
        • Broderick J.P.
        • Brott T.G.
        • Tomsick T.
        • et al.
        Ultra-early evaluation of intracerebral hemorrhage.
        J Neurosurg. 1990; 72: 195-199
        • Anderson C.S.
        • Heeley E.
        • Huang Y.
        • et al.
        Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage.
        N Engl J Med. 2013; 368: 2355-2365
        • Qureshi A.I.
        • Palesch Y.Y.
        • Barsan W.G.
        • et al.
        Intensive blood-pressure lowering in patients with acute cerebral hemorrhage.
        N Engl J Med. 2016; 375: 1033-1043
        • Moullaali T.J.
        • Wang X.
        • Martin R.H.
        • et al.
        Blood pressure control and clinical outcomes in acute intracerebral haemorrhage: a preplanned pooled analysis of individual participant data.
        Lancet Neurol. 2019; 18: 857-864
        • Boulouis G.
        • Morotti A.
        • Goldstein J.N.
        • et al.
        Intensive blood pressure lowering in patients with acute intracerebral haemorrhage: clinical outcomes and haemorrhage expansion. Systematic review and meta-analysis of randomised trials.
        J Neurol Neurosurg Psychiatry. 2017; 88: 339-345
        • Qureshi A.I.
        • Huang W.
        • Lobanova I.
        • et al.
        Outcomes of intensive systolic blood pressure reduction in patients with intracerebral hemorrhage and Excessively high initial systolic blood pressure: post hoc analysis of a randomized clinical trial.
        JAMA Neurol. 2020; 77: 1355-1365
        • Chung P.W.
        • Kim J.T.
        • Sanossian N.
        • et al.
        Association between Hyperacute stage blood pressure variability and outcome in patients with spontaneous intracerebral hemorrhage.
        Stroke. 2018; 49: 348-354
        • Frontera J.A.
        • Lewin 3rd, J.J.
        • Rabinstein A.A.
        • et al.
        Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the neurocritical care society and society of Critical care medicine.
        Neurocrit Care. 2016; 24: 6-46
        • Sarode R.
        • Milling Jr., T.J.
        • Refaai M.A.
        • et al.
        Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study.
        Circulation. 2013; 128: 1234-1243
        • Steiner T.
        • Poli S.
        • Griebe M.
        • et al.
        Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial.
        Lancet Neurol. 2016; 15: 566-573
        • Baharoglu M.I.
        • Cordonnier C.
        • Al-Shahi Salman R.
        • et al.
        Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial.
        Lancet. 2016; 387: 2605-2613
        • Shi K.
        • Tian D.C.
        • Li Z.G.
        • et al.
        Global brain inflammation in stroke.
        Lancet Neurol. 2019; 18: 1058-1066
        • Mendelow A.D.
        • Gregson B.A.
        • Rowan E.N.
        • et al.
        Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial.
        Lancet. 2013; 382: 397-408
        • Hanley D.F.
        • Thompson R.E.
        • Rosenblum M.
        • et al.
        Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial.
        Lancet. 2019; 393: 1021-1032
        • Hannah T.C.
        • Kellner R.
        • Kellner C.P.
        Minimally invasive intracerebral hemorrhage evacuation techniques: a review.
        Diagnostics (Basel). 2021; 11https://doi.org/10.3390/diagnostics11030576
        • Kuramatsu J.B.
        • Biffi A.
        • Gerner S.T.
        • et al.
        Association of surgical hematoma evacuation vs conservative treatment with functional outcome in patients with cerebellar intracerebral hemorrhage.
        JAMA. 2019; 322: 1392-1403
        • Grotta J.C.
        • Yamal J.M.
        • Parker S.A.
        • et al.
        Prospective, multicenter, controlled trial of mobile stroke units.
        N Engl J Med. 2021; 385: 971-981
        • Cooley S.R.
        • Zhao H.
        • Campbell B.C.V.
        • et al.
        Mobile stroke units Facilitate prehospital management of intracerebral hemorrhage.
        Stroke. 2021; 52: 3163-3166