Advertisement

Neuromuscular Weakness in Intensive Care

  • Deepa Malaiyandi
    Correspondence
    Corresponding author.
    Affiliations
    Division of Neurocritical Care, Department of Neurology, University of Toledo College of Medicine, UT/PPG Neurosciences Center, 2130 West Central Avenue, Suite 201, Room 2355, Toledo, OH 43606, USA
    Search for articles by this author
  • Elysia James
    Affiliations
    Division of Neurocritical Care, Department of Neurology, University of Toledo College of Medicine, UT/PPG Neurosciences Center, 2130 West Central Avenue, Suite 201, Room 2355, Toledo, OH 43606, USA
    Search for articles by this author
Published:October 06, 2022DOI:https://doi.org/10.1016/j.ccc.2022.06.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pasnoor M.
        • Dimachkie M.M.
        Approach to muscle and neuromuscular junction disorders.
        Continuum (Minneap Minn). 2019; 25: 1536-1563
        • Vanhorebeek I.
        • Latronico N.
        • Van den Berghe G.
        ICU-acquired weakness.
        Intensive Care Med. 2020; 46: 637-653
        • Birch T.B.
        Neuromuscular disorders in the intensive care Unit.
        Continuum (Minneap Minn). 2021; 27: 1344-1364
        • Cheung K.
        • Rathbone A.
        • Melanson M.
        • et al.
        Pathophysiology and management of critical illness polyneuropathy and myopathy.
        J Appl Physiol (1985). 2021; 130: 1479-1489
        • Damian M.S.
        • Wijdicks E.F.M.
        The clinical management of neuromuscular disorders in intensive care.
        Neuromuscul Disord. 2019; 29: 85-96
        • Niedermeyer S.
        • Murn M.
        • Choi P.J.
        Respiratory failure in amyotrophic lateral sclerosis.
        Chest. 2019; 155: 401-408
        • Supinski G.S.
        • Morris P.E.
        • Dhar S.
        • et al.
        Diaphragm dysfunction in critical illness.
        Chest. 2018; 153: 1040-1051
        • Guptill J.T.
        • Sanders D.B.
        Disorders of neuromuscular transmission.
        in: 8th edition. Bradley and Daroff’s Neurology in clinical practice. vol. 2. Elsevier, London2022: 1958-1977.e6
        • Guptill J.T.
        • Sanders D.B.
        Proximal, distal and generalized weakness.
        in: Daroff R.B. Fenichel G.M. Janovik J. Mazziota J.C. Bradley and Daroff’s Neurology in clinical practice. 6th edition. Elsevier, London2012: 279-295
        • Ciafaloni E.
        Myasthenia gravis and Congenital myasthenic syndromes.
        Continuum (Minneap Minn). 2019; 25: 1767-1784
        • Singh T.D.
        • Wijdicks E.F.M.
        Neuromuscular respiratory failure.
        Neurol Clin. 2021; 39: 333-353
        • Corrado B.
        • Giardulli B.
        • Costa M.
        Evidence-based practice in rehabilitation of myasthenia gravis. A systematic review of the literature.
        J Funct Morphol Kinesiol. 2020; 5: 71
        • Mayaux J.
        • Lambert J.
        • Morélot-Panzini C.
        • et al.
        Survival of amyotrophic lateral sclerosis patients after admission to the intensive care unit for acute respiratory failure: an observational cohort study.
        J Crit Care. 2019; 50: 54-58
        • Moujalled D.
        • Strasser A.
        • Liddell J.R.
        Molecular mechanisms of cell death in neurological diseases.
        Cell Death Differ. 2021; 28: 2029-2044
        • Mélé N.
        • Berzero G.
        • Maisonobe T.
        • et al.
        Motor neuron disease of paraneoplastic origin: a rare but treatable condition.
        J Neurol. 2018; 265: 1590-1599
        • Gifford A.H.
        Noninvasive ventilation as a palliative measure.
        Curr Opin Support Palliat Care. 2014; 8: 218-224
        • Jaiswal M.K.
        Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs.
        Med Res Rev. 2019; 39: 733-748
        • Shefner J.
        • Heiman-Patterson T.
        • Pioro E.P.
        • et al.
        Long-term edaravone efficacy in amyotrophic lateral sclerosis: post-hoc analyses of Study 19 (MCI186-19).
        Muscle Nerve. 2020; 61: 218-221
        • Onders R.P.
        • Elmo M.
        • Khansarinia S.
        • et al.
        Complete worldwide operative experience in laparoscopic diaphragm pacing: results and differences in spinal cord injured patients and amyotrophic lateral sclerosis patients.
        Surg Endosc. 2009; 23: 1433-1440
        • Onders R.P.
        • Elmo M.
        • Kaplan C.
        • et al.
        Final analysis of the pilot trial of diaphragm pacing in amyotrophic lateral sclerosis with long-term follow-up: diaphragm pacing positively affects diaphragm respiration.
        Am J Surg. 2014; 207: 393-397
        • DiPALS Writing Committee; DiPALS Study Group Collaborators
        Safety and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic lateral sclerosis (DiPALS): a multicentre, open-label, randomised controlled trial.
        Lancet Neurol. 2015; 14: 883-892
        • Gonzalez-Bermejo J.
        • Morélot-Panzini C.
        • Tanguy M.L.
        • et al.
        Early diaphragm pacing in patients with amyotrophic lateral sclerosis (RespiStimALS): a randomised controlled triple-blind trial.
        Lancet Neurol. 2016; 15 ([published correction appears in Lancet Neurol. 2016 Dec;15(13):1301]): 1217-1227
        • Damian M.S.
        • Srinivasan R.
        Neuromuscular problems in the ICU.
        Curr Opin Neurol. 2017; 30: 538-544
        • Solé G.
        • Salort-Campana E.
        • Pereon Y.
        • et al.
        Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French rare health care for neuromuscular diseases Network.
        Rev Neurol (Paris). 2020; 176: 507-515
        • Guidon A.C.
        Lambert-eaton myasthenic syndrome, botulism, and immune checkpoint Inhibitor-related myasthenia gravis.
        Continuum (Minneap Minn). 2019; 25: 1785-1806
        • Bodkin C.
        • Pascuzzi R.M.
        Update in the management of myasthenia gravis and Lambert-Eaton myasthenic syndrome.
        Neurol Clin. 2021; 39: 133-146
        • Moss K.R.
        • Bopp T.S.
        • Johnson A.E.
        • et al.
        New evidence for secondary axonal degeneration in demyelinating neuropathies.
        Neurosci Lett. 2021; 221 (135595): 744
        • Sheikh K.A.
        Guillain-barré syndrome.
        Continuum (Minneap Minn). 2020; 26: 1184-1204
        • Janecek J.
        • Kushlaf H.
        Toxin-induced channelopathies, neuromuscular junction disorders, and myopathy.
        Neurol Clin. 2020; 38: 765-780
        • Lentz R.W.
        • Colton M.D.
        • Mitra S.S.
        • et al.
        Innate immune checkpoint inhibitors: the Next Breakthrough in medical Oncology?.
        Mol Cancer Ther. 2021; 20: 961-974
        • Camdessanché J.P.
        End-plate disorders in intensive care Unit.
        J Clin Neurophysiol. 2020; 37: 211-213
        • Sánchez Solana L.
        • Goñi Bilbao I.
        • Ruiz García P.
        • et al.
        Acquired neuromuscular dysfunction in the intensive care unit. Disfunción neuromuscular adquirida en la unidad de cuidados intensivos.
        Enferm Intensiva (Engl Ed). 2018; 29: 128-137
        • Hermans G.
        • Wilmer A.
        • Meersseman W.
        • et al.
        Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit.
        Am J Respir Crit Care Med. 2007; 175: 480-489
        • Yang T.
        • Li Z.
        • Jiang L.
        • et al.
        Hyperlactacidemia as a risk factor for intensive care unit-acquired weakness in critically ill adult patients.
        Muscle Nerve. 2021; 64: 77-82
        • Van Aerde N.
        • Meersseman P.
        • Debaveye Y.
        • et al.
        Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study.
        Intensive Care Med. 2020; 46: 1184-1193
        • Yang T.
        • Li Z.
        • Jiang L.
        • et al.
        Risk factors for intensive care unit-acquired weakness: a systematic review and meta-analysis.
        Acta Neurol Scand. 2018; 138: 104-114
        • Wilcox S.R.
        Corticosteroids and neuromuscular blockers in development of critical illness neuromuscular abnormalities: a historical review.
        J Crit Care. 2017; 37: 149-155
        • Hokkoku K.
        • Erra C.
        • Cuccagna C.
        • et al.
        Intensive care unit-acquired weakness and positioning-related peripheral nerve injuries in COVID-19: a case Series of three patients and the latest literature review.
        Brain Sci. 2021; 11: 1177
        • Silva P.E.
        • Maldaner V.
        • Vieira L.
        • et al.
        Neuromuscular electrophysiological disorders and muscle atrophy in mechanically-ventilated traumatic brain injury patients: new insights from a prospective observational study.
        J Crit Care. 2018; 44 ([published correction appears in J Crit Care. 2018 Nov 28;:]): 87-94
        • Witteveen E.
        • Sommers J.
        • Wieske L.
        • et al.
        Diagnostic accuracy of quantitative neuromuscular ultrasound for the diagnosis of intensive care unit-acquired weakness: a cross-sectional observational study.
        Ann Intensive Care. 2017; 7: 40
        • Trethewey S.P.
        • Brown N.
        • Gao F.
        • et al.
        Interventions for the management and prevention of sarcopenia in the critically ill: a systematic review.
        J Crit Care. 2019; 50: 287-295
        • Liu M.
        • Luo J.
        • Zhou J.
        • et al.
        Intervention effect of neuromuscular electrical stimulation on ICU acquired weakness: a meta-analysis.
        Int J Nurs Sci. 2020; 7: 228-237
        • Piva S.
        • Fagoni N.
        • Latronico N.
        Intensive care unit-acquired weakness: unanswered questions and targets for future research.
        F1000Res. 2019; 8 (Faculty Rev-508): F1000
        • Dres M.
        • Gama De Abreu M.
        • Similowski T.
        Late Breaking Abstract - temporary transvenous diaphragm Neurostimulation in difficult-to-wean mechanically ventilated patients - results of the RESCUE 2 randomized controlled trial.
        Eur Respir J. 2020; 56: 4352
        • Perren A.
        • Zürcher P.
        • Schefold J.C.
        Clinical Approaches to assess post-extubation dysphagia (PED) in the critically ill.
        Dysphagia. 2019; 34: 475-486
        • Garibaldi M.
        • Siciliano G.
        • Antonini G.
        Telemedicine for neuromuscular disorders during the COVID-19 outbreak.
        J Neurol. 2021; 268: 1-4
        • Muhle P.
        • Konert K.
        • Suntrup-Krueger S.
        • et al.
        Oropharyngeal dysphagia and impaired Motility of the upper Gastrointestinal Tract-is there a clinical Link in neurocritical care?.
        Nutrients. 2021; 13: 3879
        • Jonkman A.H.
        • Rauseo M.
        • Carteaux G.
        • et al.
        Proportional modes of ventilation: technology to assist physiology.
        Intensive Care Med. 2020; 46: 2301-2313
        • Akoumianaki E.
        • Prinianakis G.
        • Kondili E.
        • et al.
        Physiologic comparison of neurally adjusted ventilator assist, proportional assist and pressure support ventilation in critically ill patients.
        Respir Physiol Neurobiol. 2014; 203: 82-89
        • Vasconcelos R.S.
        • Sales R.P.
        • Melo L.H.P.
        • et al.
        Influences of duration of inspiratory effort, respiratory mechanics, and ventilator type on Asynchrony with pressure support and proportional assist ventilation.
        Respir Care. 2017; 62: 550-557