Advertisement

Physiological Monitoring in Patients with Acute Brain Injury

A Multimodal Approach
  • Tracey H. Fan
    Affiliations
    Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA

    Department of Neurology, Division of Neurocritical Care, Brigham and Women’s Hospital, 55 Fruit Street, Boston, MA 02493, USA
    Search for articles by this author
  • Eric S. Rosenthal
    Correspondence
    Corresponding author. 55 Fruit Street, Lunder 644, Boston, MA 02114.
    Affiliations
    Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA

    Department of Neurology, Division of Clinical Neurophysiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA
    Search for articles by this author
Published:September 29, 2022DOI:https://doi.org/10.1016/j.ccc.2022.06.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chesnut R.M.
        • Marshall L.F.
        • Klauber M.R.
        • et al.
        The role of secondary brain injury in determining outcome from severe head injury.
        J Trauma. 1993; 34: 216
        • le Roux P.
        • Menon D.K.
        • Citerio G.
        • et al.
        Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the neurocritical care Society and the European Society of intensive care medicine.
        Neurocrit Care. 2014; 21: 1-26
        • Vespa P.
        • Menon D.K.
        • le Roux P.
        • et al.
        The international multi-disciplinary consensus conference on multimodality monitoring: future directions and emerging technologies.
        Neurocrit Care. 2014; 21: 270-281
        • Le Roux P.
        • Menon D.K.
        • Citerio G.
        • et al.
        The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: Evidentiary Tables: a statement for healthcare professionals from the neurocritical care Society and the European Society of intensive care medicin.
        Neurocrit Care. 2014; 21: 297-361
        • Ng S.Y.
        • Lee A.Y.W.
        Traumatic brain injuries: pathophysiology and potential therapeutic targets.
        Front Cell Neurosci. 2019; 13: 528
        • von Bornstädt D.
        • Houben T.
        • Seidel J.L.
        • et al.
        Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origin of spreading injury depolarizations.
        Neuron. 2015; 85: 1117
        • Schneeweiss B.
        • Druml W.
        • Graninger W.
        • et al.
        Assessment of oxygen-consumption by use of reverse Fick-principle and indirect calorimetry in critically ill patients.
        Clin Nutr (Edinburgh, Scotland). 1989; 8: 89-93
        • de Georgia M.A.
        Brain tissue oxygen monitoring in neurocritical care.
        J Intensive Care Med. 2015; 30: 473-483
        • Stiefel M.F.
        • Udoetuk J.D.
        • Spiotta A.M.
        • et al.
        Conventional neurocritical care and cerebral oxygenation after traumatic brain injury.
        J Neurosurg. 2006; 105: 568-575
        • Okonkwo D.O.
        • Shutter L.A.
        • Moore C.
        • et al.
        Brain tissue oxygen monitoring and management in severe traumatic brain injury (BOOST-II): a phase II randomized trial.
        Crit Care Med. 2017; 45: 1907
        • Algattas H.
        • Huang J.H.
        Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury.
        Int J Mol Sci. 2013; 15: 309-341
        • Matsushima K.
        • Peng M.
        • Velasco C.
        • et al.
        Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury.
        J Crit Care. 2012; 27: 125-131
        • Hinzman J.M.
        • Thomas T.C.
        • Quintero J.E.
        • et al.
        Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury.
        J Neurotrauma. 2012; 29: 1197-1208
        • Peerdeman S.M.
        • Girbes A.R.J.
        • Polderman K.H.
        • et al.
        Changes in cerebral interstitial glycerol concentration in head-injured patients; correlation with secondary events.
        Intensive Care Med. 2003; 29: 1825-1828
        • Dewitt D.S.
        • Prough D.S.
        Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature.
        J Neurotrauma. 2003; 20: 795-825
        • Czosnyka M.
        • Smielewski P.
        • Kirkpatrick P.
        • et al.
        Continuous assessment of the cerebral vasomotor reactivity in head injury.
        Neurosurgery. 1997; 41: 11-19
        • Hinzman J.M.
        • Andaluz N.
        • Shutter L.A.
        • et al.
        Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma.
        Brain. 2014; 137: 2960-2972
        • Hartings J.A.
        • Shuttleworth C.W.
        • Kirov S.A.
        • et al.
        The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão’s legacy.
        J Cereb Blood Flow Metab. 2017; 37: 1571
        • Dreier J.P.
        • Major S.
        • Lemale C.L.
        • et al.
        Correlates of spreading depolarization, spreading depression, and negative ultraslow potential in epidural versus subdural Electrocorticography.
        Front Neurosci. 2019; 13: 373
        • Lara L.R.
        • Püttgen H.A.
        Multimodality monitoring in the neurocritical care unit.
        Contin Lifelong Learn Neurol. 2018; 24: 1776-1788
        • Pennings F.A.
        • Schuurman P.R.
        • van den Munckhof P.
        • et al.
        Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values.
        J Neurotrauma. 2008; 25: 1173-1177
        • Sarrafzadeh A.S.
        • Sakowitz O.W.
        • Kiening K.L.
        • et al.
        Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients?.
        Crit Care Med. 2002; 30: 1062-1070
        • Rose J.C.
        • Neill T.A.
        • Hemphill J.C.
        Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation.
        Curr Opin Crit Care. 2006; 12: 97-102
        • Witsch J.
        • Frey H.P.
        • Schmidt J.M.
        • et al.
        Electroencephalographic periodic discharges and frequency-dependent brain tissue hypoxia in acute brain injury.
        JAMA Neurol. 2017; 74: 301-309
        • Pascual J.L.
        • Georgoff P.
        • Maloney-Wilensky E.
        • et al.
        Reduced brain tissue oxygen in traumatic brain injury: are most commonly used interventions successful?.
        J Trauma. 2011; 70: 535-546
        • Oddo M.
        • Bösel J.
        • le Roux P.
        • et al.
        Monitoring of brain and systemic oxygenation in neurocritical care patients.
        Neurocrit Care. 2014; 21: 103-120
        • Kistka H.
        • Dewan M.C.
        • Mocco J.
        Evidence-based cerebral vasospasm surveillance.
        Neurol Res Int. 2013; 2013: 256713
        • Heran N.S.
        • Hentschel S.J.
        • Toyota B.D.
        Jugular bulb oximetry for prediction of vasospasm following subarachnoid hemorrhage.
        Can J Neurol Sci. 2004; 31: 80-86
        • Coplin W.M.
        • O’Keefe G.E.
        • Sean Grady M.
        • et al.
        Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit.
        Neurosurgery. 1997; 41: 101-109
        • Scheeren T.W.
        • Schober P.
        • Schwarte L.A.
        Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications.
        J Clin Monit Comput. 2012; 26: 279-287
        • Misra M.
        • Stark J.
        • Dujovny M.
        • et al.
        Transcranial cerebral oximetry in random normal subjects.
        Neurol Res. 1998; 20: 137-141
        • M Oddo F.T.
        How to monitor the brain in septic patients?.
        Minerva Anestesiol. 2015; 81: 776-788
        • Chock V.Y.
        • Chock S.H.
        • Kwon N.
        • et al.
        Cerebral oxygenation and autoregulation in preterm infants (early NIRS study).
        J Pediatr. 2020; 227: 94-100.e1
        • Colak Z.
        • Borojevic M.
        • Ivancan V.
        • et al.
        The relationship between prolonged cerebral oxygen desaturation and postoperative outcome in patients undergoing coronary artery bypass grafting.
        Coll Antropol June. 2012; : 381-388
        • Storm C.
        • Leithner C.
        • Krannich A.
        • et al.
        Regional cerebral oxygen saturation after cardiac arrest in 60 patients--a prospective outcome study.
        Resuscitation. 2014; 85: 1037-1041
        • Bellander B.M.
        • Cantais E.
        • Enblad P.
        • et al.
        Consensus meeting on microdialysis in neurointensive care.
        Intensive Care Med. 2004; 30: 2166-2169
        • Staub F.
        • Graf R.
        • Gabel P.
        • et al.
        Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage.
        Neurosurgery. 2000; 47: 1106-1116
        • Skjøth-Rasmussen J.
        • Schulz M.
        • Kristensen S.R.
        • et al.
        Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage.
        J Neurosurg. 2004; 100: 8-15
        • Nagel A.
        • Graetz D.
        • Schink T.
        • et al.
        Relevance of intracranial hypertension for cerebral metabolism in aneurysmal subarachnoid hemorrhage. Clinical article.
        J Neurosurg. 2009; 111: 94-101
        • Hlatky R.
        • Valadka A.B.
        • Goodman J.C.
        • et al.
        Patterns of energy substrates during ischemia measured in the brain by microdialysis.
        J Neurotrauma. 2004; 21: 894-906
        • Roh D.J.
        • Morris N.A.
        • Claassen J.
        Intracranial multimodality monitoring for delayed cerebral ischemia.
        J Clin Neurophysiol. 2016; 33: 241-249
        • Vajkoczy P.
        • Horn P.
        • Thome C.
        • et al.
        Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage.
        J Neurosurg. 2003; 98: 1227-1234
        • Kirkpatrick P.J.
        • Smielewski P.
        • Czosnyka M.
        • et al.
        Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury.
        J Neurol Neurosurg Psychiatry. 1994; 57: 1382-1388
        • Miller C.
        • Armonda R.
        • le Roux P.
        • et al.
        Monitoring of cerebral blood flow and ischemia in the critically ill.
        Neurocrit Care. 2014; 21: 121-128
        • Lysakowski C.
        • Walder B.
        • Costanza M.C.
        • et al.
        Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review.
        Stroke. 2001; 32: 2292-2298
        • Wartenberg K.E.
        • Schmidt J.M.
        • Mayer S.A.
        Multimodality monitoring in neurocritical care.
        Crit Care Clin. 2007; 23: 507-538
        • Copplestone S.
        • Welbourne J.
        A narrative review of the clinical application of pressure reactiviy indices in the neurocritical care unit.
        Br J Neurosurg. 2018; 32: 4-12
        • Zweifel C.
        • Lavinio A.
        • Steiner L.A.
        • et al.
        Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury.
        Neurosurg Cocus. 2008; 25
        • Aries M.J.H.
        • Czosnyka M.
        • Budohoski K.P.
        • et al.
        Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury.
        Crit Care Med. 2012; 40: 2456-2463
        • Rivera-Lara L.
        • Zorrilla-Vaca A.
        • Geocadin R.G.
        • et al.
        Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review.
        Anesthesiology. 2017; 126: 1187-1199
        • Carney N.
        • Totten A.M.
        • O’Reilly C.
        • et al.
        Guidelines for the management of severe traumatic brain injury, Fourth Edition.
        Neurosurgery. 2017; 80: 6-15
        • Steiner L.A.
        • Czosnyka M.
        • Piechnik S.K.
        • et al.
        Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury.
        Crit Care Med. 2002; 30: 733-738
        • Lescot T.
        • Reina V.
        • le Manach Y.
        • et al.
        In vivo accuracy of two intraparenchymal intracranial pressure monitors.
        Intensive Care Med. 2011; 37: 875-879
        • Dey M.
        • Stadnik A.
        • Riad F.
        • et al.
        Bleeding and infection with external ventricular drainage: a systematic review in comparison with adjudicated adverse events in the ongoing Clot Lysis Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III (CLEAR-III IHV) trial.
        Neurosurgery. 2015; 76: 291-300
        • Eide P.K.
        • Sorteberg W.
        Simultaneous measurements of intracranial pressure parameters in the epidural space and in brain parenchyma in patients with hydrocephalus.
        J Neurosurg. 2010; 113: 1317-1325
        • Melhem S.
        • Shutter L.
        • Kaynar A.M.
        A trial of intracranial pressure monitoring in traumatic brain injury.
        Crit Care (London, England). 2014; 18: 302
        • le oux P.
        Physiological monitoring of the severe traumatic brain injury patient in the intensive care unit.
        Curr Neurol Neurosci Rep. 2013; 13: 331
        • Bratton S.L.
        • Chestnut R.M.
        • Ghajar J.
        • et al.
        Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring.
        J Neurotrauma. 2007; 24: S37-S44
        • Bellner J.
        • Romner B.
        • Reinstrup P.
        • et al.
        Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP).
        Surg Neurol. 2004; 62: 45-51
        • Wakerley B.R.
        • Kusuma Y.
        • Yeo L.L.L.
        • et al.
        Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure.
        J Neuroimaging. 2015; 25: 111-116
        • Harary M.
        • Dolmans R.G.F.
        • Gormley W.B.
        Intracranial pressure monitoring-review and avenues for development.
        Sensors (Basel). 2018; 18
        • Al-Mufti F.
        • Smith B.
        • Lander M.
        • et al.
        Novel minimally invasive multi-modality monitoring modalities in neurocritical care.
        J Neurol Sci. 2018; 390: 184-192
        • Shimbles S.
        • Dodd C.
        • Banister K.
        • et al.
        Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements.
        Physiol Meas. 2005; 26: 1085-1092
        • Traylor T.Y.
        • El Ahmadieh
        • Bedros N.M.
        • et al.
        Quantitative pupillometry in patients with traumatic brain injury and loss of consciousness: a prospective pilot study.
        J Clin Neurosci. 2021; 91: 88-92
        • Riker R.R.
        • Sawyer M.E.
        • Fischman V.G.
        • et al.
        Neurological pupil index and pupillary light reflex by pupillometry predict outcome early after cardiac arrest.
        Neurocrit Care. 2020; 32: 152-161
        • Chen J.W.
        • Gombart Z.J.
        • Rogers S.
        • et al.
        Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the Neurological Pupil index.
        Surg Neurol Int. 2011; 2: 82
        • Vespa P.M.
        • Nuwer M.R.
        • Nenov V.
        • et al.
        Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring.
        J Neurosurg. 1999; 91: 750-760
        • Vespa P.M.
        • O’Phelan K.
        • Shah M.
        • et al.
        Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome.
        Neurology. 2003; 60: 1441-1446
        • Vespa P.M.
        • Miller C.
        • McArthur D.
        • et al.
        Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis - PubMed.
        Crit Care Med. 2007; 35: 2830-2836
        • Claassen J.
        • Vespa P.
        • le Roux P.
        • et al.
        Electrophysiologic monitoring in acute brain injury.
        Neurocrit Care. 2014; 21: 129-147
        • Foreman B.
        • Claassen J.
        Quantitative EEG for the detection of brain ischemia.
        Crit Care (London, England). 2012; 16: 216
        • Rosenthal E.S.
        • Biswal S.
        • Zafar S.F.
        • et al.
        Continuous electroencephalography predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective study of diagnostic accuracy.
        Ann Neurol. 2018; 83: 958-969
        • Rots M.L.
        • van Putten M.J.A.M.
        • Hoedemaekers C.W.E.
        • et al.
        Continuous EEG monitoring for early detection of delayed cerebral ischemia in subarachnoid hemorrhage: a pilot study.
        Neurocrit Care. 2016; 24: 207-216
        • Lissak I.A.
        • Locascio J.J.
        • Zafar S.F.
        • et al.
        Electroencephalography, hospital complications, and longitudinal outcomes after subarachnoid hemorrhage.
        Neurocrit Care. 2021; 35: 1