Advertisement

Neurotrauma and Intracranial Pressure Management

Published:October 13, 2022DOI:https://doi.org/10.1016/j.ccc.2022.08.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chesnut R.
        • Videtta W.
        • Vespa P.
        • et al.
        Intracranial pressure monitoring: fundamental considerations and rationale for monitoring.
        Neurocrit Care. 2014; 21: 64-84
        • Farahvar A.
        • Gerber L.M.
        • Chiu Y.L.
        • et al.
        Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring.
        J Neurosurg. 2012; 117: 729-734
        • Talving P.
        • Karamanos E.
        • Teixeira P.G.
        • et al.
        Intracranial pressure monitoring in severe head injury: compliance with Brain Trauma Foundation guidelines and effect on outcomes: a prospective study.
        J Neurosurg. 2013; 119: 1248-1254
        • Alali A.S.
        • Fowler R.A.
        • Mainprize T.G.
        • et al.
        Intracranial pressure monitoring in severe traumatic brain injury: results from the american college of surgeons trauma quality improvement program.
        J Neurotrauma. 2013; 30: 1737-1746
        • Gerber L.M.
        • Chiu Y.L.
        • Carney N.
        • et al.
        Marked reduction in mortality in patients with severe traumatic brain injury.
        J Neurosurg. 2013; 119: 1583-1590
        • Carney N.
        • Totten A.M.
        • O’Reilly C.
        • et al.
        Guidelines for the management of severe traumatic brain injury, Fourth Edition.
        Neurosurgery. 2017; 80: 6-15
        • Chesnut R.M.
        • Temkin N.
        • Carney N.
        • et al.
        A trial of intracranial-pressure monitoring in traumatic brain injury.
        N Engl J Med. 2012; 367: 2471-2481
        • Chesnut R.M.
        • Bleck T.P.
        • Citerio G.
        • et al.
        A consensus-based interpretation of the benchmark evidence from south american trials: treatment of intracranial pressure trial.
        J Neurotrauma. 2015; 32: 1722-1724
        • Roux P.L.
        Intracranial pressure after the BEST TRIP trial.
        Curr Opin Crit Care. 2014; 20: 141-147
        • Foundation B.T.
        • Surgeons AA of N
        • Surgeons C of N
        • et al.
        Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring.
        J Neurotrauma. 2007; 24: S37-S44
        • Stocchetti N.
        • Picetti E.
        • Berardino M.
        • et al.
        Clinical applications of intracranial pressure monitoring in traumatic brain injury.
        Acta Neurochir. 2014; 156: 1615-1622
        • Harary M.
        • Dolmans R.G.F.
        • Gormley W.B.
        Intracranial pressure monitoring—review and avenues for development.
        Sensors Basel Switz. 2018; 18: 465
        • Rosner M.J.
        • Rosner S.D.
        • Johnson A.H.
        Cerebral perfusion pressure: management protocol and clinical results.
        J Neurosurg. 1995; 83: 949-962
        • Steiner L.A.
        • Czosnyka M.
        • Piechnik S.K.
        • et al.
        Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury.
        Crit Care Med. 2002; 30: 733-738
        • Depreitere B.
        • Güiza F.
        • Berghe GV den
        • et al.
        Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
        J Neurosurg. 2014; 120: 1451-1457
        • Wijdicks E.F.M.
        Lundberg and his waves.
        Neurocrit Care. 2019; 31: 546-549
        • Cold G.E.
        Cerebral blood flow in acute head injury. The regulation of cerebral blood flow and metabolism during the acute phase of head injury, and its significance for therapy.
        Acta Neurochir Suppl. 1990; 49: 1-64
        • Lang E.W.
        • Lagopoulos J.
        • Griffith J.
        • et al.
        Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow.
        J Neurol Neurosurg Psychiatr. 2003; 74: 1053
        • Steiner L.A.
        • Johnston A.J.
        • Chatfield D.A.
        • et al.
        The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients.
        Anesth Analg. 2003; 97: 572-576
        • Schmidt E.A.
        • Czosnyka M.
        • Steiner L.A.
        • et al.
        Asymmetry of pressure autoregulation after traumatic brain injury.
        J Neurosurg. 2003; 99: 991-998
        • Overgaard J.
        • Tweed W.A.
        Cerebral circulation after head injury: Part 1: cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations.
        J Neurosurg. 1974; 41: 531-541
        • Preiksaitis A.
        • Krakauskaite S.
        • Petkus V.
        • et al.
        Association of severe traumatic brain injury patient outcomes with duration of cerebrovascular autoregulation impairment events.
        Neurosurgery. 2016; 79: 75-82
        • Saugel B.
        • Kouz K.
        • Meidert A.S.
        • et al.
        How to measure blood pressure using an arterial catheter: a systematic 5-step approach.
        Crit Care Lond Engl. 2020; 24: 172
        • Depreitere B.
        • Meyfroidt G.
        • Güiza F.
        What do we mean by cerebral perfusion pressure?.
        Acta Neurochir Suppl. 2018; 126: 201-203
        • Contant C.F.
        • Valadka A.B.
        • Gopinath S.P.
        • et al.
        Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury.
        J Neurosurg. 2001; 95: 560-568
        • Sorrentino E.
        • Diedler J.
        • Kasprowicz M.
        • et al.
        Critical thresholds for cerebrovascular reactivity after traumatic brain injury.
        Neurocrit Care. 2012; 16: 258-266
        • Thomas E.
        • Czosnyka M.
        • Hutchinson P.
        • NACCS
        SBNS. Calculation of cerebral perfusion pressure in the management of traumatic brain injury: joint position statement by the councils of the Neuroanaesthesia and Critical Care Society of Great Britain and Ireland (NACCS) and the Society of British Neurological Surgeons (SBNS).
        Br J Anaesth. 2015; 115: 487-488
        • Dahlqvist M.B.
        • Andres R.H.
        • Raabe A.
        • et al.
        Brain herniation in a patient with apparently normal intracranial pressure: a case report.
        J Med Case Rep. 2010; 4: 297
        • Stiver S.I.
        Complications of decompressive craniectomy for traumatic brain injury.
        Neurosurg Focus. 2009; 26: E7
        • Lundberg N.
        • Troupp H.
        • Lorin H.
        Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury: a preliminary report.
        J Neurosurg. 1965; 22: 581-590
        • Turgeon A.F.
        • Lauzier F.
        • Simard J.F.
        • et al.
        Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study.
        Can Med Assoc J. 2011; 183: 1581-1588
        • Souter M.J.
        • Blissitt P.A.
        • Blosser S.
        • et al.
        Recommendations for the critical care management of devastating brain injury: prognostication, psychosocial, and ethical management: a position statement for healthcare professionals from the neurocritical care society.
        Neurocrit Care. 2015; 23: 4-13
        • Harvey D.
        • Butler J.
        • Groves J.
        • et al.
        Management of perceived devastating brain injury after hospital admission: a consensus statement from stakeholder professional organizations.
        Br J Anaesth. 2018; 120: 138-145
        • Resnick D.K.
        • Marion D.W.
        • Carlier P.
        Outcome analysis of patients with severe head injuries and prolonged intracranial hypertension.
        J Trauma Inj Infect Crit Care. 1997; 42: 1108-1111
        • Young J.S.
        • Blow O.
        • Turrentine F.
        • et al.
        Is there an upper limit of intracranial pressure in patients with severe head injury if cerebral perfusion pressure is maintained?.
        Neurosurg Focus. 2003; 15: 1-7
        • Honda M.
        • Ichibayashi R.
        • Suzuki G.
        • et al.
        Consideration of the intracranial pressure threshold value for the initiation of traumatic brain injury treatment: a xenon CT and perfusion CT study.
        Neurocrit Care. 2017; 27: 308-315
        • Hawryluk G.W.J.
        • Aguilera S.
        • Buki A.
        • et al.
        A management algorithm for patients with intracranial pressure monitoring: the seattle international severe traumatic brain injury consensus conference (SIBICC).
        Intensive Care Med. 2019; 45: 1783-1794
        • Patel H.C.
        • Menon D.K.
        • Tebbs S.
        • et al.
        Specialist neurocritical care and outcome from head injury.
        Intensive Care Med. 2002; 28: 547-553
        • Lam A.M.
        • Winn H.R.
        • Cullen B.F.
        • et al.
        Hyperglycemia and neurological outcome in patients with head injury.
        J Neurosurg. 1991; 75: 545-551
        • Wettervik T.S.
        • Howells T.
        • Ronne-Engström E.
        • et al.
        High arterial glucose is associated with poor pressure autoregulation, high cerebral lactate/pyruvate ratio and poor outcome following traumatic brain injury.
        Neurocrit Care. 2019; 31: 526-533
        • Graffagnino C.
        • Gurram A.R.
        • Kolls B.
        • et al.
        Intensive insulin therapy in the neurocritical care setting is associated with poor clinical outcomes.
        Neurocrit Care. 2010; 13: 307-312
        • Finfer S.
        • Chittock D.
        • Li Y.
        • et al.
        Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study.
        Intensive Care Med. 2015; 41: 1037-1047
        • Magnoni S.
        • Tedesco C.
        • Carbonara M.
        • et al.
        Relationship between systemic glucose and cerebral glucose is preserved in patients with severe traumatic brain injury, but glucose delivery to the brain may become limited when oxidative metabolism is impaired.
        Crit Care Med. 2012; 40: 1785-1791
        • Cooper D.J.
        • Nichol A.D.
        • Bailey M.
        • et al.
        Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the polar randomized clinical trial.
        JAMA. 2018; 320: 2211
        • Polderman K.H.
        Induced hypothermia and fever control for prevention and treatment of neurological injuries.
        Lancet. 2008; 371: 1955-1969
        • Lewis S.R.
        • Evans D.J.
        • Butler A.R.
        • et al.
        Hypothermia for traumatic brain injury.
        Cochrane Database Syst Rev. 2017; 9: CD001048
        • Tokutomi T.
        • Morimoto K.
        • Miyagi T.
        • et al.
        Optimal Temperature for the management of severe traumatic brain injury: effect of hypothermia on intracranial pressure, systemic and intracranial hemodynamics, and metabolism.
        Neurosurgery. 2003; 52: 102
        • Clifton G.L.
        • Valadka A.
        • Zygun D.
        • et al.
        Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: hypothermia II): a randomised trial.
        Lancet Neurol. 2011; 10: 131-139
        • Kollmar R.
        • Staykov D.
        • Dorfler A.
        • et al.
        Hypothermia reduces perihemorrhagic edema after intracerebral hemorrhage.
        Stroke. 2010; 41: 1684-1689
        • Gupta A.K.
        • Al-Rawi P.G.
        • Hutchinson P.J.
        • et al.
        Effect of hypothermia on brain tissue oxygenation in patients with severe head injury.
        Br J Anaesth. 2002; 88: 188-192
        • Oddo M.
        • Frangos S.
        • Maloney-Wilensky E.
        • et al.
        Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury.
        Neurocrit Care. 2010; 12: 10-16
        • Badjatia N.
        • Strongilis E.
        • Gordon E.
        • et al.
        Metabolic impact of shivering during therapeutic temperature modulation.
        Stroke. 2008; 39: 3242-3247
        • Voicu S.
        • Deye N.
        • Malissin I.
        • et al.
        Influence of α-Stat and pH-stat blood gas management strategies on cerebral blood flow and oxygenation in patients treated with therapeutic hypothermia after out-of-hospital cardiac arrest: a crossover study∗.
        Crit Care Med. 2014; 42: 1849-1861
        • Gullans S.R.
        • Verbalis J.G.
        Control of brain volume during hyperosmolar and hypoosmolar conditions.
        Annu Rev Med. 1993; 44: 289-301
        • Adrogué H.J.
        • Madias N.E.
        Hypernatremia.
        N Engl J Med. 2000; 342: 1493-1499
        • McDowell M.E.
        • Wolf A.V.
        • Steer A.
        Osmotic volumes of distribution; idiogenic changes in osmotic pressure associated with administration of hypertonic solutions.
        Am J Phys. 1955; 180: 545-558
        • Roquilly A.
        • Moyer J.D.
        • Huet O.
        • et al.
        Effect of continuous infusion of hypertonic saline vs standard care on 6-month neurological outcomes in patients with traumatic brain injury.
        JAMA. 2021; 325: 2056-2066
        • Oddo M.
        • Poole D.
        • Helbok R.
        • et al.
        Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations.
        Intensive Care Med. 2018; 44: 449-463
        • Cook A.M.
        • Jones G.M.
        • Hawryluk G.W.J.
        • et al.
        Guidelines for the acute treatment of cerebral edema in neurocritical care patients.
        Neurocrit Care. 2020; 32: 647-666
        • Lazaridis C.
        Advanced hemodynamic monitoring: principles and practice in neurocritical care.
        Neurocrit Care. 2012; 16: 163-169
        • Fletcher J.J.
        • Bergman K.
        • Blostein P.A.
        • et al.
        Fluid balance, complications, and brain tissue oxygen tension monitoring following severe traumatic brain injury.
        Neurocrit Care. 2010; 13: 47-56
        • Gantner D.
        • Moore E.M.
        • Cooper D.J.
        Intravenous fluids in traumatic brain injury.
        Curr Opin Crit Care. 2014; 20: 385-389
        • Steiner L.A.
        • Coles J.P.
        • Johnston A.J.
        • et al.
        Responses of posttraumatic pericontusional cerebral blood flow and blood volume to an increase in cerebral perfusion pressure.
        J Cereb Blood Flow Metab. 2003; 23: 1371-1377
        • Dunn-Meynell A.A.
        • Hassanain M.
        • Levin B.E.
        Norepinephrine and traumatic brain injury: a possible role in post-traumatic edema.
        Brain Res. 1998; 800: 245-252
        • Brassard P.
        • Seifert T.
        • Secher N.H.
        Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects?.
        Br J Anaesth. 2009; 102: 800-805
        • Pranevicius M.
        • Pranevicius O.
        Cerebral venous steal: blood flow diversion with increased tissue pressure.
        Neurosurgery. 2002; 51: 1267
        • McManus M.L.
        • Strange K.
        Acute volume regulation of brain cells in response to hypertonic challenge.
        Anesthesiology. 1993; 78: 1132-1137
        • Kontos H.A.
        • Raper A.J.
        • Patterson J.L.
        Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels.
        Stroke. 1977; 8: 358-360
        • Coles J.P.
        • Minhas P.S.
        • Fryer T.D.
        • et al.
        Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates.
        Crit Care Med. 2002; 30: 1950-1959
        • Coles J.P.
        • Fryer T.D.
        • Coleman M.R.
        • et al.
        Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism.
        Crit Care Med. 2007; 35: 568-578
        • Curley G.
        • Kavanagh B.P.
        • Laffey J.G.
        Hypocapnia and the injured brain: more harm than benefit.
        Crit Care Med. 2010; 38: 1348-1359
        • Gagnon A.
        • Laroche M.
        • Williamson D.
        • et al.
        Incidence and characteristics of cerebral hypoxia after craniectomy in brain-injured patients: a cohort study.
        J Neurosurg. 2021; 135: 554-561
        • Muizelaar J.P.
        • van der Poel H.G.
        • Li Z.
        • et al.
        Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit.
        J Neurosurg. 1988; 69: 923-927
        • Steiner L.A.
        • Balestreri M.
        • Johnston A.J.
        • et al.
        Sustained moderate reductions in arterial CO2 after brain trauma Time-course of cerebral blood flow velocity and intracranial pressure.
        Intensive Care Med. 2004; 30: 2180-2187
        • Alexandrov A.V.
        • Sharma V.K.
        • Lao A.Y.
        • et al.
        Reversed robin hood syndrome in acute ischemic stroke patients.
        Stroke. 2007; 38: 3045-3048
        • Menon D.K.
        • Coles J.P.
        • Gupta A.K.
        • et al.
        Diffusion limited oxygen delivery following head injury∗.
        Crit Care Med. 2004; 32: 1384-1390
        • Veenith T.V.
        • Carter E.L.
        • Geeraerts T.
        • et al.
        Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury.
        JAMA Neurol. 2016; 73: 542
        • Kohler K.
        • Nallapareddy S.
        • Ercole A.
        In silico model of critical cerebral oxygenation after traumatic brain injury: implications for rescuing hypoxic tissue.
        J Neurotrauma. 2019; 36: 2109-2116
        • Habler O.P.
        • Messmer K.F.W.
        The physiology of oxygen transport.
        Transfus Sci. 1997; 18: 425-435
        • Dellazizzo L.
        • Demers S.P.
        • Charbonney E.
        • et al.
        Minimal PaO2 threshold after traumatic brain injury and clinical utility of a novel brain oxygenation ratio.
        J Neurosurg. 2019; 131: 1639-1647
        • Okonkwo D.O.
        • Shutter L.A.
        • Moore C.
        • et al.
        Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial.
        Crit Care Med. 2017; 45: 1907-1914
        • Geeraerts T.
        • Velly L.
        • Abdennour L.
        • et al.
        Management of severe traumatic brain injury (first 24 hours).
        Anaesth Crit Care Pa. 2018; 37: 171-186
        • Martin N.A.
        • Patwardhan R.V.
        • Alexander M.J.
        • et al.
        Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm.
        J Neurosurg. 1997; 87: 9-19
        • Oertel M.
        • Boscardin W.J.
        • Obrist W.D.
        • et al.
        Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients.
        J Neurosurg. 2005; 103: 812-824
        • Tahsili-Fahadan P.
        • Geocadin R.G.
        Heart–brain Axis.
        Circ Res. 2017; 120: 559-572
        • Ibrahim M.S.
        • Samuel B.
        • Mohamed W.
        • et al.
        Cardiac dysfunction in neurocritical care: an autonomic perspective.
        Neurocrit Care. 2019; 30: 508-521
        • Lannes M.
        • Zeiler F.
        • Guichon C.
        • et al.
        The use of milrinone in patients with delayed cerebral ischemia following subarachnoid hemorrhage: a systematic review.
        Can J Neurol Sci J Can Des Sci Neurologiques. 2017; 44: 152-160
        • Mutoh T.
        • Ishikawa T.
        • Suzuki A.
        • et al.
        Continuous cardiac output and near-infrared spectroscopy monitoring to assist in management of symptomatic cerebral vasospasm after subarachnoid hemorrhage.
        Neurocrit Care. 2010; 13: 331-338
        • Depreitere B.
        • Citerio G.
        • Smith M.
        • et al.
        Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a delphi consensus of clinicians.
        Neurocrit Care. 2021; 34: 731-738
        • Grände P.O.
        Critical evaluation of the lund concept for treatment of severe traumatic head injury, 25 years after its introduction.
        Front Neurol. 2017; 8: 315
        • Huang S.J.
        • Hong W.C.
        • Han Y.Y.
        • et al.
        Clinical outcome of severe head injury using three different ICP and CPP protocol-driven therapies.
        J Clin Neurosci. 2006; 13: 818-822
        • Johnson U.
        • Nilsson P.
        • Ronne-Engström E.
        • et al.
        Favorable outcome in traumatic brain injury patients with impaired cerebral pressure autoregulation when treated at low cerebral perfusion pressure levels.
        Neurosurgery. 2011; 68: 714-722
        • Elf K.
        • Nilsson P.
        • Enblad P.
        Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care.
        Crit Care Med. 2002; 30: 2129-2134
        • Nordström C.H.
        Physiological and biochemical principles underlying volume-targeted therapy—the “lund concept.
        Neurocrit Care. 2005; 2: 83-95
        • Koskinen L.O.D.
        • Olivecrona M.
        • Grände P.O.
        Severe traumatic brain injury management and clinical outcome using the Lund concept.
        Neuroscience. 2014; 283: 245-255
        • Robertson C.S.
        Management of cerebral perfusion pressure after traumatic brain injury.
        Anesthesiology. 2001; 95: 1513-1517
        • Howells T.
        • Elf K.
        • Jones P.A.
        • et al.
        Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma.
        J Neurosurg. 2005; 102: 311-317
        • Bouma G.J.
        • Muizelaar J.P.
        • Bandoh K.
        • et al.
        Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow.
        J Neurosurg. 1992; 77: 15-19
        • Aries M.J.H.
        • Czosnyka M.
        • Budohoski K.P.
        • et al.
        Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury.
        Crit Care Med. 2012; 40: 2456-2463
        • Donnelly J.
        • Czosnyka M.
        • Adams H.
        • et al.
        Individualizing thresholds of cerebral perfusion pressure using estimated limits of autoregulation.
        Crit Care Med. 2017; 45: 1464-1471
        • Dias C.
        • Silva M.J.
        • Pereira E.
        • et al.
        Optimal cerebral perfusion pressure management at bedside: a single-center pilot study.
        Neurocrit Care. 2015; 23: 92-102
        • Johnson U.
        • Lewén A.
        • Ronne-Engström E.
        • et al.
        Should the neurointensive care management of traumatic brain injury patients be individualized according to autoregulation status and injury subtype?.
        Neurocrit Care. 2014; 21: 259-265
        • Bouzat P.
        • Marques-Vidal P.
        • Zerlauth J.B.
        • et al.
        Accuracy of brain multimodal monitoring to detect cerebral hypoperfusion after traumatic brain injury∗.
        Crit Care Med. 2015; 43: 445-452
        • Chang J.J.J.
        • Youn T.S.
        • Benson D.
        • et al.
        Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury∗.
        Crit Care Med. 2009; 37: 283-290
        • Chesnut R.
        • Aguilera S.
        • Buki A.
        • et al.
        A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).
        Intensive Care Med. 2020; 46: 919-929
        • Oddo M.
        • Levine J.M.
        • Mackenzie L.
        • et al.
        Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independent of intracranial hypertension and low cerebral perfusion pressure.
        Neurosurgery. 2011; 69: 1
        • Maloney-Wilensky E.
        • Gracias V.
        • Itkin A.
        • et al.
        Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review.
        Crit Care Med. 2009; 37: 2057-2063
        • Spiotta A.M.
        • Stiefel M.F.
        • Gracias V.H.
        • et al.
        Brain tissue oxygen–directed management and outcome in patients with severe traumatic brain injury: clinical article.
        J Neurosurg. 2010; 113: 571-580
        • Weiner G.M.
        • Lacey M.R.
        • Mackenzie L.
        • et al.
        Decompressive craniectomy for elevated intracranial pressure and its effect on the cumulative ischemic burden and therapeutic intensity levels after severe traumatic brain injury.
        Neurosurgery. 2010; 66: 1111-1119
        • Obrist W.D.
        • Langfitt T.W.
        • Jaggi J.L.
        • et al.
        Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension.
        J Neurosurg. 1984; 61: 241-253
        • Bouma G.J.
        • Muizelaar J.P.
        • Choi S.C.
        • et al.
        Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia.
        J Neurosurg. 1991; 75: 685-693
        • Roux P.L.
        • Menon D.K.
        • Citerio G.
        • et al.
        Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care : a statement for healthcare professionals from the neurocritical care society and the European society of intensive care medicine.
        Intensive Care Med. 2014; 40: 1189-1209
        • Ropper A.H.
        Hyperosmolar therapy for raised intracranial pressure.
        N Engl J Med. 2012; 367: 746-752
        • Lescot T.
        • Degos V.
        • Zouaoui A.
        • et al.
        Opposed effects of hypertonic saline on contusions and noncontused brain tissue in patients with severe traumatic brain injury&ast.
        Crit Care Med. 2006; 34: 3029-3033
        • Cascino T.
        • Baglivo J.
        • Conti J.
        • et al.
        Quantitative CT assessment of furosemide- and mannitol-induced changes in brain water content.
        Neurology. 1983; 33: 898-903
        • Kaufmann A.M.
        • Cardoso E.R.
        Aggravation of vasogenic cerebral edema by multiple-dose mannitol.
        J Neurosurg. 1992; 77: 584-589
        • McManus M.L.
        • Soriano S.G.
        Rebound swelling of astroglial cells exposed to hypertonic mannitol.
        Anesthesiology. 1998; 88: 1586-1591
        • Quintard H.
        • Meyfroidt G.
        • Citerio G.
        Hyperosmolar agents for TBI: all are equal, but some are more equal than others?.
        Neurocrit Care. 2020; 33: 613-614