Advertisement

Taking the Pulse of the Current State of Simulation

Published:November 02, 2022DOI:https://doi.org/10.1016/j.ccc.2022.09.011

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ericsson K.A.
        Deliberate practice and the Acquisition and Maintenance of Expert performance in medicine and related domains.
        Acad Med. 2004; 79: S70-S81
      1. Page RL. Brief History of Flight Simulation. Presented at: SimTecT 2000 Proceedings; 2000.

        • Rosen K.R.
        The history of medical simulation.
        J Crit Care. 2008; 23: 157-166
        • Ballestriero R.
        Anatomical models and wax Venuses: art masterpieces or scientific craft works?.
        J Anat. 2010; 216: 223-234
        • ACGME Common Program Requirements
        Accreditation program for graduate medical education.
        (Available at:)
        • Kohn L.
        • Corrigan J.
        • Molla S.
        To Err is human: building a safer health system.
        National Academy Press, 1999
        • Tjomsland N.
        • Baskett P.
        Åsmund S. Lærdal.
        Resuscitation. 2002; 53: 115-119https://doi.org/10.1016/s0300-9572(02)00033-3
        • Denson J.S.
        • Abrahamson S.
        A computer-controlled patient simulator.
        Jama. 1969; 208: 504-508https://doi.org/10.1001/jama.1969.03160030078009
        • Gaba D.M.
        • DeAnda A.
        A comprehensive anesthesia simulation environment.
        Anesthesiology. 1988; 69: 387-394https://doi.org/10.1097/00000542-198809000-00017
        • Cooper J.B.
        • Taqueti V.R.
        A brief history of the development of mannequin simulators for clinical education and training.
        Qual Saf Heal Care. 2004; 13: i11-i18https://doi.org/10.1136/qhc.13.suppl_1.i11
        • Gaba D.M.
        Improving anesthesiologists’ performance by simulating reality.
        Anesthesiology. 1992; 76: 491-494https://doi.org/10.1097/00000542-199204000-00001
        • Aebersold M.
        The history of simulation and its impact on the future.
        Aacn Adv Crit Care. 2016; 27: 56-61https://doi.org/10.4037/aacnacc2016436
        • Felix H.
        • Simon L.
        Conceptual frameworks in medical simulation. In: StatPearls.
        (Available at:)
        • McGaghie W.C.
        • Harris I.B.
        Learning theory foundations of simulation-based mastery learning.
        Simul Healthc J Soc Simul Healthc. 2018; 13: S15-S20https://doi.org/10.1097/sih.0000000000000279
        • Burke H.
        • Mancuso L.
        Social cognitive theory, metacognition, and simulation learning in nursing education.
        J Nurs Educ. 2012; 51: 543-548https://doi.org/10.3928/01484834-20120820-02
        • Chauvin S.W.
        Applying educational theory to simulation-based training and assessment in surgery.
        Surg Clin N Am. 2015; 95: 695-715https://doi.org/10.1016/j.suc.2015.04.006
        • Cheung J.J.H.
        • Koh J.
        • Brett C.
        • et al.
        Preparation with Web-based observational practice improves efficiency of simulation-based mastery learning.
        Simul Healthc J Soc Simul Healthc. 2016; 11: 316-322https://doi.org/10.1097/sih.0000000000000171
        • Fraser K.
        • Ma I.
        • Teteris E.
        • et al.
        Emotion, cognitive load and learning outcomes during simulation training.
        Med Educ. 2012; 46: 1055-1062https://doi.org/10.1111/j.1365-2923.2012.04355.x
        • Fraser K.L.
        • Ayres P.
        • Sweller J.
        Cognitive load theory for the design of medical simulations.
        Simul Healthc J Soc Simul Healthc. 2015; 10: 295-307https://doi.org/10.1097/sih.0000000000000097
        • Kirkpatrick D.
        Evaluating training programs.
        McGaw-Hill Education, San Francisco, CA1975
        • McGaghie W.C.
        Medical education research as translational science.
        Sci Trans Med. 2010; 17https://doi.org/10.1126/scitranslmed.3000679
        • Dougherty D.
        • Conway P.H.
        The “3T’s” Road Map to transform US health care: the “how” of high-quality care.
        Jama. 2008; 299: 2319-2321https://doi.org/10.1001/jama.299.19.2319
        • Roussin C.J.
        • Weinstock P.
        SimZones.
        Acad Med. 2017; 92: 1114-1120https://doi.org/10.1097/acm.0000000000001746
        • Harwayne-Gidansky I.
        • Panesar R.
        • Maa T.
        Recent Advances in simulation for pediatric critical care medicine.
        Curr Pediatr Rep. 2020; 8: 147-156https://doi.org/10.1007/s40124-020-00226-5
        • Henricksen J.W.
        • Troy L.
        • Siefkes H.
        Pediatric critical care medicine fellowship simulation Use survey.
        Pediatr Crit Care Me. 2020; 21: e908-e914https://doi.org/10.1097/pcc.0000000000002343
        • Johnson E.M.
        • Hamilton M.F.
        • Watson R.S.
        • et al.
        An Intensive, simulation-based communication course for pediatric critical care medicine fellows.
        Pediatr Crit Care Me. 2017; 18: e348-e355https://doi.org/10.1097/pcc.0000000000001241
        • Fernandez G.L.
        • Page D.W.
        • Coe N.P.
        • et al.
        Boot camp: educational outcomes after 4 Successive Years of Preparatory simulation-based training at Onset of Internship.
        J Surg Educ. 2012; 69: 242-248https://doi.org/10.1016/j.jsurg.2011.08.007
        • Nishisaki A.
        • Hales R.
        • Biagas K.
        • et al.
        A multi-institutional high-fidelity simulation “boot camp” orientation and training program for first year pediatric critical care fellows.
        Pediatr Crit Care Me. 2009; 10: 157-162https://doi.org/10.1097/pcc.0b013e3181956d29
        • Cohen E.R.
        • Barsuk J.H.
        • Moazed F.
        • et al.
        Making july safer.
        Acad Med. 2013; 88: 233-239https://doi.org/10.1097/acm.0b013e31827bfc0a
        • Weile J.
        • Nebsbjerg M.A.
        • Ovesen S.H.
        • et al.
        Simulation-based team training in time-critical clinical presentations in emergency medicine and critical care: a review of the literature.
        Adv Simul. 2021; 6: 3https://doi.org/10.1186/s41077-021-00154-4
        • Cheng A.
        • Brown L.L.
        • Duff J.P.
        • et al.
        Improving cardiopulmonary resuscitation with a CPR feedback device and Refresher simulations (CPR CARES study): a randomized clinical trial.
        Jama Pediatr. 2015; 169: 137-144https://doi.org/10.1001/jamapediatrics.2014.2616
        • Cheng A.
        • Duff J.P.
        • Kessler D.
        • et al.
        Optimizing CPR performance with CPR coaching for pediatric cardiac arrest: a randomized simulation-based clinical trial.
        Resuscitation. 2018; 132: 33-40https://doi.org/10.1016/j.resuscitation.2018.08.021
        • Cheng A.
        • Kessler D.
        • Lin Y.
        • et al.
        Influence of cardiopulmonary resuscitation coaching and provider role on perception of cardiopulmonary resuscitation quality during simulated pediatric cardiac arrest.
        Pediatr Crit Care Me. 2019; https://doi.org/10.1097/pcc.0000000000001871
        • Dewan M.
        • Tegtmeyer K.
        Let’s Get it Right, set it up Again: Achieving high Reliability through simulation and debriefing.
        Pediatr Crit Care Me. 2019; 20: 497-499https://doi.org/10.1097/pcc.0000000000001908
        • Cory M.J.
        • Colman N.
        • McCracken C.E.
        • et al.
        Rapid cycle deliberate practice versus reflective debriefing for pediatric Septic Shock training.
        Pediatr Crit Care Me. 2019; https://doi.org/10.1097/pcc.0000000000001891
        • Hunt E.A.
        • Jeffers J.
        • McNamara L.
        • et al.
        Improved cardiopulmonary resuscitation performance with code ACES2: a resuscitation quality Bundle.
        J Am Hear Assoc Cardiovasc Cerebrovasc Dis. 2018; 7: e009860https://doi.org/10.1161/jaha.118.009860
        • Hunt E.A.
        • Duval-Arnould J.M.
        • Nelson-McMillan K.L.
        • et al.
        Pediatric resident resuscitation skills improve after “Rapid Cycle Deliberate Practice” training.
        Resuscitation. 2014; 85: 945-951https://doi.org/10.1016/j.resuscitation.2014.02.025
        • Chancey R.J.
        • Sampayo E.M.
        • Lemke D.S.
        • et al.
        Learners’ Experiences during rapid cycle deliberate practice simulations.
        Simul Healthc J Soc Simul Healthc. 2019; 14: 18-28https://doi.org/10.1097/sih.0000000000000324
        • Andreatta P.
        • Saxton E.
        • Thompson M.
        • et al.
        Simulation-based mock codes significantly correlate with improved pediatric patient cardiopulmonary arrest survival rates&ast.
        Pediatr Crit Care Me. 2011; 12: 33-38https://doi.org/10.1097/pcc.0b013e3181e89270
        • Sawyer T.
        • Burke C.
        • McMullan D.M.
        • et al.
        Impacts of a pediatric extracorporeal cardiopulmonary resuscitation (ECPR) simulation training program.
        Acad Pediatr. 2019; 19: 566-571https://doi.org/10.1016/j.acap.2019.01.005
        • Lind M.M.
        • Corridore M.
        • Sheehan C.
        • et al.
        A multidisciplinary approach to a pediatric Difficult airway simulation course.
        Otolaryngol Head Neck Surg. 2018; 159: 127-135https://doi.org/10.1177/0194599818758993
        • Maa T.
        • Scherzer D.J.
        • Harwayne-Gidansky I.
        • et al.
        Prevalence of errors in anaphylaxis in Kids (PEAK): a Multicenter simulation-based study.
        J Allergy Clin Immunol Pract. 2020; 8 (e3): 1239-1246https://doi.org/10.1016/j.jaip.2019.11.013
        • Dubé M.M.
        • Reid J.
        • Kaba A.
        • et al.
        PEARLS for systems Integration: a modified PEARLS framework for debriefing systems-focused simulations.
        Simul Healthc J Soc Simul Healthc. 2019; 14: 333-342https://doi.org/10.1097/sih.0000000000000381
        • Holden R.J.
        • Carayon P.
        • Gurses A.P.
        • et al.
        Seips 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients.
        Ergonomics. 2013; 56: 1669-1686https://doi.org/10.1080/00140139.2013.838643
        • Hunziker S.
        • Johansson A.C.
        • Tschan F.
        • et al.
        Teamwork and leadership in cardiopulmonary resuscitation.
        J Am Coll Cardiol. 2011; 57: 2381-2388https://doi.org/10.1016/j.jacc.2011.03.017
        • Grimsley E.A.
        • Cochrane N.H.
        • Keane R.R.
        • et al.
        A pulse Check on leadership and teamwork.
        Pediatr Emerg Care. 2021; 37: e1122-e1127https://doi.org/10.1097/pec.0000000000001923
        • Nadkarni L.D.
        • Roskind C.G.
        • Auerbach M.A.
        • et al.
        The development and Validation of a Concise Instrument for formative assessment of team leader performance during simulated pediatric resuscitations.
        Simul Healthc J Soc Simul Healthc. 2018; 13: 77-82https://doi.org/10.1097/sih.0000000000000267
        • Florez A.R.
        • Shepard L.N.
        • Frey M.E.
        • et al.
        The Concise assessment of leader management tool: evaluation of healthcare provider leadership during real-life pediatric Emergencies.
        Simul Healthc J Soc Simul Healthc. 2022; https://doi.org/10.1097/sih.0000000000000669
        • Lin E.
        • You A.X.
        • Wardi G.
        Comparison of in-Person and Telesimulation for critical care training during the COVID-19 pandemic.
        Ats Scholar. 2021; 2: 581-594https://doi.org/10.34197/ats-scholar.2021-0053oc
        • Huda T.
        • Greig D.
        • Strang T.
        • et al.
        Preparation for COVID-19: lessons from simulation.
        Clin Teach. 2020; 18https://doi.org/10.1111/tct.13262
        • Mastoras G.
        • Farooki N.
        • Willinsky J.
        • et al.
        Rapid deployment of a virtual simulation curriculum to prepare for critical care triage during the COVID-19 pandemic.
        Cjem. 2022; : 1-8https://doi.org/10.1007/s43678-022-00280-6
        • Ramanathan K.
        • Antognini D.
        • Combes A.
        • et al.
        Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases.
        Lancet Respir Med. 2020; 8: 518-526https://doi.org/10.1016/s2213-2600(20)30121-1
        • Dieckmann P.
        • Torgeirsen K.
        • Qvindesland S.A.
        • et al.
        The use of simulation to prepare and improve responses to infectious disease outbreaks like COVID-19: practical tips and resources from Norway, Denmark, and the UK.
        Adv Simul. 2020; 5: 3https://doi.org/10.1186/s41077-020-00121-5
        • Harwayne-Gidansky I.
        • Zurca A.
        • Maa T.
        • et al.
        Defining priority Areas for critical care simulation: a modified Delphi consensus Project.
        Cureus. 2021; 13: e15844https://doi.org/10.7759/cureus.15844
        • Anton N.
        • Calhoun A.C.
        • Stefanidis D.
        Current research priorities in healthcare simulation: results of a Delphi survey.
        Simul Healthc J Soc Simul Healthc. 2022; 17: e1-e7https://doi.org/10.1097/sih.0000000000000564
        • Walsh C.
        • Lydon S.
        • Byrne D.
        • et al.
        The 100 most Cited articles on healthcare simulation.
        Simul Healthc J Soc Simul Healthc. 2018; 13: 211-220https://doi.org/10.1097/sih.0000000000000293
        • Kyaw B.M.
        • Saxena N.
        • Posadzki P.
        • et al.
        Virtual reality for health professions education: systematic review and meta-analysis by the digital health education Collaboration.
        J Med Internet Res. 2019; 21https://doi.org/10.2196/12959
        • Foronda C.L.
        • Fernandez-Burgos M.
        • Nadeau C.
        • et al.
        Virtual simulation in nursing education: a systematic review Spanning 1996 to 2018.
        Simul Healthc J Soc Simul Healthc. 2020; 15: 46-54https://doi.org/10.1097/sih.0000000000000411
        • Ralston B.H.
        • Willett R.C.
        • Namperumal S.
        • et al.
        Use of virtual reality for pediatric cardiac critical care simulation.
        Cureus. 2021; 13: e15856https://doi.org/10.7759/cureus.15856
        • Uruthiralingam U.
        • Rea P.M.
        Augmented and virtual reality in anatomical education – a systematic review.
        Adv Exp Med Biol. 2020; : 89-101https://doi.org/10.1007/978-3-030-37639-0_5
        • Bracq M.S.
        • Michinov E.
        • Jannin P.
        Virtual reality simulation in nontechnical skills training for healthcare professionals.
        Simul Healthc J Soc Simul Healthc. 2018; https://doi.org/10.1097/sih.0000000000000347
        • Barsom E.Z.
        • Graafland M.
        • Schijven M.P.
        Systematic review on the effectiveness of augmented reality applications in medical training.
        Surg Endosc. 2016; 30: 4174-4183https://doi.org/10.1007/s00464-016-4800-6
        • Eckert M.
        • Volmerg J.S.
        • Friedrich C.M.
        Augmented reality in medicine: systematic and Bibliographic review.
        JMIR Mhealth Uhealth. 2019; 26https://doi.org/10.2196/10967
        • Yoon J.W.
        • Chen R.E.
        • Kim E.J.
        • et al.
        Augmented reality for the surgeon: systematic review.
        Int J Med Robotics Comput Assisted Surg. 2018; 14: e1914https://doi.org/10.1002/rcs.1914
        • Cannizzaro D.
        • Zaed I.
        • Safa A.
        • et al.
        Augmented reality in neurosurgery, state of art and future Projections. A systematic review.
        Front Surg. 2022; 9: 864792https://doi.org/10.3389/fsurg.2022.864792
        • Schneider M.
        • Kunz C.
        • Pal’a A.
        • et al.
        Augmented reality–assisted ventriculostomy.
        Neurosurg Focus. 2021; 50: E16https://doi.org/10.3171/2020.10.focus20779
        • Chan K.S.
        • Zary N.
        Applications and challenges of implementing artificial intelligence in medical education: Integrative review.
        JMIR Med Educ. 2019; 5https://doi.org/10.2196/13930
        • Alonso-Silverio G.A.
        • Pérez-Escamirosa F.
        • Bruno-Sanchez R.
        • et al.
        Development of a laparoscopic box trainer based on open Source Hardware and artificial intelligence for objective assessment of surgical Psychomotor skills.
        Surg Innov. 2018; 25: 380-388https://doi.org/10.1177/1553350618777045
        • Weaver S.J.
        • Dy S.M.
        • Rosen M.A.
        Team-training in healthcare: a narrative synthesis of the literature.
        Bmj Qual Saf. 2014; 23: 359-372https://doi.org/10.1136/bmjqs-2013-001848
        • Issenberg S.B.
        • Mcgaghie W.C.
        • Petrusa E.R.
        • et al.
        Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review.
        Med Teach. 2009; 27: 10-28https://doi.org/10.1080/01421590500046924
        • Steinert Y.
        • Mann K.
        • Anderson B.
        • et al.
        A systematic review of faculty development initiatives designed to enhance teaching effectiveness: a 10-year update: BEME Guide No. 40.
        Med Teach. 2016; 38: 1-18https://doi.org/10.1080/0142159x.2016.1181851
        • TeamSTEPPS 2.0
        Agency for healthcare research and quality.
        (Available at:)
        • Schmutz J.B.
        • Lei Z.
        • Eppich W.J.
        Reflection on the fly: development of the team reflection behavioral observation (TuRBO) system for acute care teams.
        Acad Med. 2021; 96: 1337-1345https://doi.org/10.1097/acm.0000000000004105
        • Gittell J.
        High performance healthcare: using the Power of relationships to achieve quality, efficiency and resilience.
        McGraw-Hill, 2009
        • Gittell J.
        Transforming relationships for high performance.
        Stanford University Press, 2016
        • Purdy E.I.
        • McLean D.
        • Alexander C.
        • et al.
        Doing our work better, together: a relationship-based approach to defining the quality improvement agenda in trauma care.
        Bmj Open Qual. 2020; 9: e000749https://doi.org/10.1136/bmjoq-2019-000749
        • Purdy E.
        • Alexander C.
        • Shaw R.
        • et al.
        The team briefing: setting up relational coordination for your resuscitation.
        Clin Exp Emerg Med. 2020; 7: 1-4https://doi.org/10.15441/ceem.19.021
        • Leslie K.
        • Baker L.
        • Egan-Lee E.
        • et al.
        Advancing faculty development in medical education.
        Acad Med. 2013; 88: 1038-1045https://doi.org/10.1097/acm.0b013e318294fd29
        • Onyura B.
        • Baker L.
        • Cameron B.
        • et al.
        Evidence for curricular and instructional design approaches in undergraduate medical education: an umbrella review.
        Med Teach. 2015; 38: 150-161https://doi.org/10.3109/0142159x.2015.1009019
        • Allen L.M.
        • Hay M.
        • Palermo C.
        Evaluation in health professions education—is measuring outcomes enough?.
        Med Educ. 2022; 56: 127-136https://doi.org/10.1111/medu.14654
        • Yardley S.
        • Dornan T.
        Kirkpatrick’s levels and education ‘evidence.
        Med Educ. 2012; 46: 97-106https://doi.org/10.1111/j.1365-2923.2011.04076.x
        • Frye A.W.
        • Hemmer P.A.
        Program evaluation models and related theories: AMEE Guide No. 67.
        Med Teach. 2012; 34: e288-e299https://doi.org/10.3109/0142159x.2012.668637
        • Maduakolam E.
        • Madden B.
        • Kelley T.
        • et al.
        Beyond diversity: Envisioning inclusion in medical education research and practice.
        Teach Learn Med. 2020; 32: 459-465https://doi.org/10.1080/10401334.2020.1836462
        • Fernandez A.
        Further incorporating diversity, equity, and inclusion into medical education research.
        Acad Med. 2019; 94 (11S Association of American Medical Colleges Learn Serve Lead: Proceedings of the 58th Annual Research in Medical Education Sessions)): S5-S6https://doi.org/10.1097/acm.0000000000002916
        • Picketts L.
        • Warren M.D.
        • Bohnert C.
        Diversity and inclusion in simulation: addressing ethical and psychological safety concerns when working with simulated participants.
        Bmj Simul Technology Enhanc Learn. 2021; 7: 590-599https://doi.org/10.1136/bmjstel-2020-000853