Advertisement
Review Article| Volume 39, ISSUE 2, P385-406, April 2023

Translating Guidelines into Practical Practice

Point-of-Care Ultrasound for Pediatric Critical Care Clinicians
Published:November 03, 2022DOI:https://doi.org/10.1016/j.ccc.2022.09.012

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Critical Care Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbott J.
        Emergency department ultrasound: is it really time for real time?.
        J Emerg Med. 1990; 8: 491-492
        • American College of Emergency P. American College of Emergency Physicians
        ACEP emergency ultrasound guidelines-2001.
        Ann Emerg Med. 2001; 38: 470-481
        • Lichtenstein D.
        • Axler O.
        Intensive use of general ultrasound in the intensive care unit. Prospective study of 150 consecutive patients.
        Intensive Care Med. 1993; 19: 353-355
        • Miller L.E.
        • Stoller J.Z.
        • Fraga M.V.
        Point-of-care ultrasound in the neonatal ICU.
        Curr Opin Pediatr. 2020; 32: 216-227
        • Conlon T.W.
        • Nishisaki A.
        • Singh Y.
        • et al.
        Moving beyond the stethoscope: diagnostic point-of-care ultrasound in pediatric practice.
        Pediatrics. 2019; 144: e20191402
        • Frankel H.L.
        • Kirkpatrick A.W.
        • Elbarbary M.
        • et al.
        Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-Part I: general ultrasonography.
        Crit Care Med. 2015; 43: 2479-2502
        • Levitov A.
        • Frankel H.L.
        • Blaivas M.
        • et al.
        Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-Part II: cardiac ultrasonography.
        Crit Care Med. 2016; 44: 1206-1227
        • Singh Y.
        • Tissot C.
        • Fraga M.V.
        • et al.
        International evidence-based guidelines on point of care ultrasound (POCUS) for critically ill neonates and children issued by the POCUS working group of the European society of paediatric and neonatal intensive care (ESPNIC).
        Crit Care. 2020; 24: 65
        • Ullman J.I.
        • Stoelting R.K.
        Internal jugular vein location with the ultrasound Doppler blood flow detector.
        Anesth Analg. 1978; 57: 118
        • Legler D.
        • Nugent M.
        Doppler localization of the internal jugular vein facilitates central venous cannulation.
        Anesthesiology. 1984; 60: 481-482
        • Machi J.
        • Takeda J.
        • Kakegawa T.
        Safe jugular and subclavian venipuncture under ultrasonographic guidance.
        Am J Surg. 1987; 153: 321-323
        • Denys B.G.
        • Uretsky B.F.
        Anatomical variations of internal jugular vein location: impact on central venous access.
        Crit Care Med. 1991; 19: 1516-1519
        • Kwon T.H.
        • Kim Y.L.
        • Cho D.K.
        Ultrasound-guided cannulation of the femoral vein for acute haemodialysis access.
        Nephrol Dial Transpl. 1997; 12: 1009-1012
        • Skolnick M.L.
        The role of sonography in the placement and management of jugular and subclavian central venous catheters.
        AJR Am J Roentgenol. 1994; 163: 291-295
        • Kantor D.B.
        • Su E.
        • Milliren C.E.
        • et al.
        Ultrasound guidance and other determinants of successful peripheral artery catheterization in critically ill children.
        Pediatr Crit Care Med. 2016; 17: 1124-1130
        • Joing S.
        • Strote S.
        • Caroon L.
        • et al.
        Ultrasound-guided peripheral IV placement.
        N Engl J Med. 2012; 366: e38
        • de Souza T.H.
        • Brandao M.B.
        • Santos T.M.
        • et al.
        Ultrasound guidance for internal jugular vein cannulation in PICU: a randomised controlled trial.
        Arch Dis Child. 2018; 103: 952-956
        • Verghese S.T.
        • McGill W.A.
        • Patel R.I.
        • et al.
        Ultrasound-guided internal jugular venous cannulation in infants: a prospective comparison with the traditional palpation method.
        Anesthesiology. 1999; 91: 71-77
        • Aouad M.T.
        • Kanazi G.E.
        • Abdallah F.W.
        • et al.
        Femoral vein cannulation performed by residents: a comparison between ultrasound-guided and landmark technique in infants and children undergoing cardiac surgery.
        Anesth Analg. 2010; 111: 724-728
        • Verghese S.T.
        • McGill W.A.
        • Patel R.I.
        • et al.
        Comparison of three techniques for internal jugular vein cannulation in infants.
        Paediatr Anaesth. 2000; 10: 505-511
        • Sigaut S.
        • Skhiri A.
        • Stany I.
        • et al.
        Ultrasound guided internal jugular vein access in children and infant: a meta-analysis of published studies.
        Paediatr Anaesth. 2009; 19: 1199-1206
        • Merchaoui Z.
        • Lausten-Thomsen U.
        • Pierre F.
        • et al.
        Supraclavicular approach to ultrasound-guided brachiocephalic vein cannulation in children and neonates.
        Front Pediatr. 2017; 5: 211
        • Pirotte T.
        • Veyckemans F.
        Ultrasound-guided subclavian vein cannulation in infants and children: a novel approach.
        Br J Anaesth. 2007; 98: 509-514
        • Byon H.J.
        • Lee G.W.
        • Lee J.H.
        • et al.
        Comparison between ultrasound-guided supraclavicular and infraclavicular approaches for subclavian venous catheterization in children--a randomized trial.
        Br J Anaesth. 2013; 111: 788-792
        • Kim Y.J.
        • Ma S.
        • Yoon H.K.
        • et al.
        Supraclavicular versus infraclavicular approach for ultrasound-guided right subclavian venous catheterisation: a randomised controlled non-inferiority trial.
        Anaesthesia. 2022; 77: 59-65
        • Lausten-Thomsen U.
        • Merchaoui Z.
        • Dubois C.
        • et al.
        Ultrasound-guided subclavian vein cannulation in low birth weight neonates.
        Pediatr Crit Care Med. 2017; 18: 172-175
        • Siddik-Sayyid S.M.
        • Aouad M.T.
        • Ibrahim M.H.
        • et al.
        Femoral arterial cannulation performed by residents: a comparison between ultrasound-guided and palpation technique in infants and children undergoing cardiac surgery.
        Paediatr Anaesth. 2016; 26: 823-830
        • Gu W.J.
        • Tie H.T.
        • Liu J.C.
        • et al.
        Efficacy of ultrasound-guided radial artery catheterization: a systematic review and meta-analysis of randomized controlled trials.
        Crit Care. 2014; 18: R93
        • Liu L.
        • Tan Y.
        • Li S.
        • et al.
        Modified dynamic needle tip positioning" short-axis, out-of-plane, ultrasound-guided radial artery cannulation in neonates: a randomized controlled trial.
        Anesth Analg. 2019; 129: 178-183
        • Chittoodan S.
        • Breen D.
        • O'Donnell B.D.
        • et al.
        Long versus short axis ultrasound guided approach for internal jugular vein cannulation: a prospective randomised controlled trial.
        Med Ultrason. 2011; 13: 21-25
        • Mahler S.A.
        • Wang H.
        • Lester C.
        • et al.
        Short- vs long-axis approach to ultrasound-guided peripheral intravenous access: a prospective randomized study.
        Am J Emerg Med. 2011; 29: 1194-1197
        • Blaivas M.
        • Brannam L.
        • Fernandez E.
        Short-axis versus long-axis approaches for teaching ultrasound-guided vascular access on a new inanimate model.
        Acad Emerg Med. 2003; 10: 1307-1311
        • Brescia F.
        • Biasucci D.G.
        • Fabiani F.
        • et al.
        A novel ultrasound-guided approach to the axillary vein: oblique-axis view combined with in-plane puncture.
        J Vasc access. 2019; 20: 763-768
        • Takeshita J.
        • Tachibana K.
        • Nakajima Y.
        • et al.
        Long-axis in-plane approach versus short-axis out-of-plane approach for ultrasound-guided central venous catheterization in pediatric patients: a randomized controlled trial.
        Pediatr Crit Care Med. 2020; 21: e996-e1001
        • Davda D.
        • Schrift D.
        Posterior wall punctures between long- and short-axis techniques in a phantom intravenous model.
        J Ultrasound Med. 2018; 37: 2891-2897
        • Chen H.E.
        • Yovanoff M.A.
        • Pepley D.F.
        • et al.
        Evaluating surgical resident needle insertion skill gains in central venous catheterization training.
        J Surg Res. 2019; 233: 351-359
        • Sappenfield J.W.
        • Smith W.B.
        • Cooper L.A.
        • et al.
        Visualization improves supraclavicular access to the subclavian vein in a mixed reality simulator.
        Anesth Analg. 2018; 127: 83-89
        • Chew S.C.
        • Beh Z.Y.
        • Hakumat Rai V.R.
        • et al.
        Ultrasound-guided central venous vascular access-novel needle navigation technology compared with conventional method: a randomized study.
        J Vasc access. 2020; 21: 26-32
        • England J.R.
        • Fischbeck T.
        • Tchelepi H.
        The value of needle-guidance technology in ultrasound-guided percutaneous procedures performed by radiology residents: a comparison of freehand, in-plane, fixed-angle, and electromagnetic needle tracking techniques.
        J Ultrasound Med. 2019; 38: 399-405
        • Chenkin J.
        • Lee S.
        • Huynh T.
        • et al.
        Procedures can be learned on the Web: a randomized study of ultrasound-guided vascular access training.
        Acad Emerg Med. 2008; 15: 949-954
        • Calcutt T.
        • Brady R.
        • Liew K.
        Paediatric ultrasound-guided vascular access: experiences and outcomes from an emergency department educational intervention.
        J Paediatr Child Health. 2021; 58: 830-835
        • Vusse L.V.
        • Shepherd A.
        • Bergam B.
        • et al.
        Procedure training workshop for internal medicine residents that emphasizes procedural ultrasound: logistics and teaching materials.
        MedEdPORTAL. 2020; 16: 10897
        • Hartman N.
        • Wittler M.
        • Askew K.
        • et al.
        Validation of a performance checklist for ultrasound-guided internal jugular central lines for use in procedural instruction and assessment.
        Postgrad Med J. 2017; 93: 67-70
        • Kahr Rasmussen N.
        • Nayahangan L.J.
        • Carlsen J.
        • et al.
        Evaluation of competence in ultrasound-guided procedures-a generic assessment tool developed through the Delphi method.
        Eur Radiol. 2021; 31: 4203-4211
        • Narayanasamy S.
        • Ding L.
        • Yang F.
        • et al.
        Feasibility study of cumulative sum (CUSUM) analysis as a competency assessment tool for ultrasound-guided venous access procedures.
        Can J Anaesth. 2022; 69: 256-264
        • Perera P.
        • Mailhot T.
        • Riley D.
        • et al.
        The RUSH exam: rapid Ultrasound in SHock in the evaluation of the critically lll.
        Emerg Med Clin North Am. 2010; 28 (vii): 29-56
        • Gartlehner G.
        • Wagner G.
        • Affengruber L.
        • et al.
        Point-of-Care ultrasonography in patients with acute dyspnea: an evidence report for a clinical practice guideline by the American College of Physicians.
        Ann Intern Med. 2021; 174: 967-976
        • Avila-Reyes D.
        • Acevedo-Cardona A.O.
        • Gomez-Gonzalez J.F.
        • et al.
        Point-of-care ultrasound in cardiorespiratory arrest (POCUS-CA): narrative review article.
        Ultrasound J. 2021; 13: 46
        • Singh Y.
        • Bhombal S.
        • Katheria A.
        • et al.
        The evolution of cardiac point of care ultrasound for the neonatologist.
        Eur J Pediatr. 2021; 180: 3565-3575
        • van Laere D.
        • van Overmeire B.
        • Gupta S.
        • et al.
        Application of NPE in the assessment of a patent ductus arteriosus.
        Pediatr Res. 2018; 84: 46-56
        • de Boode W.P.
        • Kluckow M.
        • McNamara P.J.
        • et al.
        Role of neonatologist-performed echocardiography in the assessment and management of patent ductus arteriosus physiology in the newborn.
        Semin Fetal Neonatal Med. 2018; 23: 292-297
        • Megri M.
        • Fridenmaker E.
        • Disselkamp M.
        Where are we heading with fluid responsiveness and septic shock?.
        Cureus. 2022; 14
        • Vignon P.
        • Repesse X.
        • Begot E.
        • et al.
        Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients.
        Am J Respir Crit Care Med. 2017; 195: 1022-1032
        • Schefold J.C.
        • Storm C.
        • Bercker S.
        • et al.
        Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis.
        J Emerg Med. 2010; 38: 632-637
        • Feissel M.
        • Michard F.
        • Faller J.-P.
        • et al.
        The respiratory variation in inferior vena cava diameter as a guide to fluid therapy.
        Intensive Care Med. 2004; 30: 1834-1837
        • Byon H.J.
        • Lim C.W.
        • Lee J.H.
        • et al.
        Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery.
        Br J Anaesth. 2013; 110: 586-591
        • Preau S.
        • Bortolotti P.
        • Colling D.
        • et al.
        Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure.
        Crit Care Med. 2017; 45: e290-e297
        • Orso D.
        • Paoli I.
        • Piani T.
        • et al.
        Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis.
        J Intensive Care Med. 2020; 35: 354-363
        • Gan H.
        • Cannesson M.
        • Chandler J.R.
        • et al.
        Predicting fluid responsiveness in children: a systematic review.
        Anesth Analg. 2013; 117: 1380-1392
        • Pereira de Souza Neto E.
        • Grousson S.
        • Duflo F.
        • et al.
        Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography.
        Br J Anaesth. 2011; 106: 856-864
        • Desgranges F.P.
        • Desebbe O.
        • Pereira de Souza Neto E.
        • et al.
        Respiratory variation in aortic blood flow peak velocity to predict fluid responsiveness in mechanically ventilated children: a systematic review and meta-analysis.
        Paediatr Anaesth. 2016; 26: 37-47
        • Wang J.
        • Zhou D.
        • Gao Y.
        • et al.
        Effect of VTILVOT variation rate on the assessment of fluid responsiveness in septic shock patients.
        Medicine (Baltimore). 2020; 99: e22702
        • Wang X.
        • Jiang L.
        • Liu S.
        • et al.
        Value of respiratory variation of aortic peak velocity in predicting children receiving mechanical ventilation: a systematic review and meta-analysis.
        Crit Care. 2019; 23: 372
        • Blanco P.
        Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings.
        Ultrasound J. 2020; 12: 1-9
        • Feissel M.
        • Mangin I.
        • Ruyer O.
        • et al.
        Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock.
        Chest. 2001; 119: 867-873
        • Hope M.D.
        • de la Pena E.
        • Yang P.C.
        • et al.
        A visual approach for the accurate determination of echocardiographic left ventricular ejection fraction by medical students.
        J Am Soc Echocardiogr. 2003; 16: 824-831
        • Pershad J.
        • Myers S.
        • Plouman C.
        • et al.
        Bedside limited echocardiography by the emergency physician is accurate during evaluation of the critically ill patient.
        Pediatrics. 2004; 114: e667-e671
        • Vignon P.
        • Mucke F.
        • Bellec F.
        • et al.
        Basic critical care echocardiography: validation of a curriculum dedicated to noncardiologist residents.
        Crit Care Med. 2011; 39: 636-642
        • Spurney C.F.
        • Sable C.A.
        • Berger J.T.
        • et al.
        Use of a hand-carried ultrasound device by critical care physicians for the diagnosis of pericardial effusions, decreased cardiac function, and left ventricular enlargement in pediatric patients.
        J Am Soc Echocardiogr. 2005; 18: 313-319
        • Klugman D.
        • Berger J.T.
        Echocardiography and focused cardiac ultrasound.
        Pediatr Crit Care Med. 2016; 17: S222-S224
        • Singh Y.
        Echocardiographic evaluation of hemodynamics in neonates and children.
        Front Pediatr. 2017; 5: 201
        • Nikravan S.
        • Song P.
        • Bughrara N.
        • et al.
        Focused ultrasonography for septic shock resuscitation.
        Curr Opin Crit Care. 2020; 26: 296-302
        • Sweeney D.A.
        • Wiley B.M.
        Integrated multiorgan bedside ultrasound for the diagnosis and management of sepsis and septic shock.
        Semin Respir Crit Care Med. 2021; 42: 641-649
        • Ranjit S.
        • Aram G.
        • Kissoon N.
        • et al.
        Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study.
        Pediatr Crit Care Med. 2014; 15: e17-e26
        • Arnoldi S.
        • Glau C.L.
        • Walker S.B.
        • et al.
        Integrating focused cardiac ultrasound into pediatric septic shock assessment.
        Pediatr Crit Care Med. 2021; 22: 262-274
        • Jone P.N.
        • Ivy D.D.
        Echocardiography in pediatric pulmonary hypertension.
        Front Pediatr. 2014; 2: 124
        • Pérez-Casares A.
        • Cesar S.
        • Brunet-Garcia L.
        • et al.
        Echocardiographic evaluation of pericardial effusion and cardiac tamponade.
        Front Pediatr. 2017; 5: 79
        • Yousef N.
        • Singh Y.
        • De Luca D.
        Playing it SAFE in the NICU" SAFE-R: a targeted diagnostic ultrasound protocol for the suddenly decompensating infant in the NICU.
        Eur J Pediatr. 2022; 181: 393-398
        • Hardwick J.A.
        • Griksaitis M.J.
        Fifteen-minute consultation: point of care ultrasound in the management of paediatric shock.
        Arch Dis Childhood-Education Pract. 2021; 106: 136-141
        • Tsang T.S.
        • Freeman W.K.
        • Sinak L.J.
        • et al.
        Echocardiographically guided pericardiocentesis: evolution and state-of-the-art technique.
        Mayo Clin Proc. 1998; 73: 647-652
        • Luis S.A.
        • Kane G.C.
        • Luis C.R.
        • et al.
        Overview of optimal techniques for pericardiocentesis in contemporary practice.
        Curr Cardiol Rep. 2020; 22: 1-10
        • Lichtenstein D.A.
        • Meziere G.A.
        Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol.
        Chest. 2008; 134: 117-125
        • Ammirabile A.
        • Buonsenso D.
        • Di Mauro A.
        Lung ultrasound in pediatrics and neonatology: an update.
        Healthcare (Basel). 2021; 9
        • Musolino A.M.
        • Toma P.
        • De Rose C.
        • et al.
        Ten years of pediatric lung ultrasound: a narrative review.
        Front Physiol. 2021; 12: 721951
        • Potter S.K.
        • Griksaitis M.J.
        The role of point-of-care ultrasound in pediatric acute respiratory distress syndrome: emerging evidence for its use.
        Ann Transl Med. 2019; 7: 507
        • Pietersen P.I.
        • Madsen K.R.
        • Graumann O.
        • et al.
        Lung ultrasound training: a systematic review of published literature in clinical lung ultrasound training.
        Crit Ultrasound J. 2018; 10: 23
        • Cantinotti M.
        • Marchese P.
        • Giordano R.
        • et al.
        Overview of lung ultrasound in pediatric cardiology.
        Diagnostics (Basel). 2022; 12
        • Kharasch S.
        • Duggan N.M.
        • Cohen A.R.
        • et al.
        Lung ultrasound in children with respiratory tract infections: viral, bacterial or COVID-19? A narrative review.
        Open Access Emerg Med. 2020; 12: 275-285
        • Raimondi F.
        • Rodriguez Fanjul J.
        • Aversa S.
        • et al.
        Lung ultrasound in the crashing infant (LUCI) protocol study group.
        Lung Ultrasound Diagnosing Pneumothorax Critically Ill Neonate J Pediatr. 2016; 175: 74-78
        • Cattarossi L.
        • Copetti R.
        • Brusa G.
        • et al.
        Lung ultrasound diagnostic accuracy in neonatal pneumothorax.
        Can Respir J. 2016; 2016: 6515069
        • Dahmarde H.
        • Parooie F.
        • Salarzaei M.
        Accuracy of ultrasound in diagnosis of pneumothorax: a comparison between neonates and adults-a systematic review and meta-analysis.
        Can Respir J. 2019; 2019: 5271982
        • Dancel R.
        • Schnobrich D.
        • Puri N.
        • et al.
        Recommendations on the use of ultrasound guidance for adult thoracentesis: a position statement of the society of hospital medicine.
        J Hosp Med. 2018; 13: 126-135
        • Lichtenstein D.
        Lung ultrasound in acute respiratory failure an introduction to the BLUE-protocol.
        Minerva Anestesiol. 2009; 75: 313-317
        • Caiulo V.A.
        • Gargani L.
        • Caiulo S.
        • et al.
        Lung ultrasound in bronchiolitis: comparison with chest X-ray.
        Eur J Pediatr. 2011; 170: 1427-1433
        • Tsung J.W.
        • Kessler D.O.
        • Shah V.P.
        Prospective application of clinician-performed lung ultrasonography during the 2009 H1N1 influenza A pandemic: distinguishing viral from bacterial pneumonia.
        Crit Ultrasound J. 2012; 4: 16
        • Basile V.
        • Di Mauro A.
        • Scalini E.
        • et al.
        Lung ultrasound: a useful tool in diagnosis and management of bronchiolitis.
        BMC Pediatr. 2015; 15: 63
        • Varshney T.
        • Mok E.
        • Shapiro A.J.
        • et al.
        Point-of-care lung ultrasound in young children with respiratory tract infections and wheeze.
        Emerg Med J. 2016; 33: 603-610
        • La Regina D.P.
        • Bloise S.
        • Pepino D.
        • et al.
        Lung ultrasound in bronchiolitis.
        Pediatr Pulmonol. 2021; 56: 234-239
        • Liu J.
        • Wang Y.
        • Fu W.
        • et al.
        Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound.
        Medicine (Baltimore). 2014; 93: e197
        • Liu J.
        • Chen X.X.
        • Li X.W.
        • et al.
        Lung ultrasonography to diagnose transient tachypnea of the newborn.
        Chest. 2016; 149: 1269-1275
        • Chen S.W.
        • Fu W.
        • Liu J.
        • et al.
        Routine application of lung ultrasonography in the neonatal intensive care unit.
        Medicine (Baltimore). 2017; 96: e5826
        • Sawires H.K.
        • Ghany E.A.A.
        • Hussein N.F.
        • et al.
        Use of lung ultrasound in detection of complications of respiratory distress syndrome.
        Ultrasound Med Biol. 2015; 41: 2319-2325
        • Copetti R.
        • Cattarossi L.
        • Macagno F.
        • et al.
        Lung ultrasound in respiratory distress syndrome: a useful tool for early diagnosis.
        Neonatology. 2008; 94: 52-59
        • Vergine M.
        • Copetti R.
        • Brusa G.
        • et al.
        Lung ultrasound accuracy in respiratory distress syndrome and transient tachypnea of the newborn.
        Neonatology. 2014; 106: 87-93
        • Raimondi F.
        • Yousef N.
        • Rodriguez Fanjul J.
        • et al.
        A multicenter lung ultrasound study on transient tachypnea of the neonate.
        Neonatology. 2019; 115: 263-268
        • Razak A.
        • Faden M.
        Neonatal lung ultrasonography to evaluate need for surfactant or mechanical ventilation: a systematic review and meta-analysis.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 164-171
        • De Martino L.
        • Yousef N.
        • Ben-Ammar R.
        • et al.
        Lung ultrasound score predicts surfactant need in extremely preterm neonates.
        Pediatrics. 2018; 142
        • Raschetti R.
        • Yousef N.
        • Vigo G.
        • et al.
        Echography-guided surfactant therapy to improve timeliness of surfactant replacement: a quality improvement project.
        J Pediatr. 2019; 212: 137-143 e131
        • Pereda M.A.
        • Chavez M.A.
        • Hooper-Miele C.C.
        • et al.
        Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis.
        Pediatrics. 2015; 135: 714-722
        • Tsou P.Y.
        • Chen K.P.
        • Wang Y.H.
        • et al.
        Diagnostic accuracy of lung ultrasound performed by novice versus advanced sonographers for pneumonia in children: a systematic review and meta-analysis.
        Acad Emerg Med. 2019; 26: 1074-1088
        • Yan J.H.
        • Yu N.
        • Wang Y.H.
        • et al.
        Lung ultrasound vs chest radiography in the diagnosis of children pneumonia: systematic evidence.
        Medicine (Baltimore). 2020; 99: e23671
        • Lu X.
        • Jin Y.
        • Li Y.
        • et al.
        Diagnostic accuracy of lung ultrasonography in childhood pneumonia: a meta-analysis.
        Eur J Emerg Med. 2022; 29: 105-117
        • Liu J.
        • Cao H.Y.
        • Fu W.
        Lung ultrasonography to diagnose meconium aspiration syndrome of the newborn.
        J Int Med Res. 2016; 44: 1534-1542
        • Piastra M.
        • Yousef N.
        • Brat R.
        • et al.
        Lung ultrasound findings in meconium aspiration syndrome.
        Early Hum Dev. 2014; 90: S41-S43
        • Kaskinen A.K.
        • Martelius L.
        • Kirjavainen T.
        • et al.
        Assessment of extravascular lung water by ultrasound after congenital cardiac surgery.
        Pediatr Pulmonol. 2017; 52: 345-352
        • Volpicelli G.
        • Skurzak S.
        • Boero E.
        • et al.
        Lung ultrasound predicts well extravascular lung water but is of limited usefulness in the prediction of wedge pressure.
        Anesthesiology. 2014; 121: 320-327
        • Acosta C.M.
        • Maidana G.A.
        • Jacovitti D.
        • et al.
        Accuracy of transthoracic lung ultrasound for diagnosing anesthesia-induced atelectasis in children.
        Anesthesiology. 2014; 120: 1370-1379
        • Brat R.
        • Yousef N.
        • Klifa R.
        • et al.
        Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure.
        JAMA Pediatr. 2015; 169: e151797
        • Bouhemad B.
        • Brisson H.
        • Le-Guen M.
        • et al.
        Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment.
        Am J Respir Crit Care Med. 2011; 183: 341-347
        • Song I.K.
        • Kim E.H.
        • Lee J.H.
        • et al.
        Utility of perioperative lung ultrasound in pediatric cardiac surgery: a randomized controlled trial.
        Anesthesiology. 2018; 128: 718-727
        • Elayashy M.
        • Madkour M.A.
        • Mahmoud A.A.A.
        • et al.
        Effect of ultrafiltration on extravascular lung water assessed by lung ultrasound in children undergoing cardiac surgery: a randomized prospective study.
        BMC Anesthesiol. 2019; 19: 93
        • Ma O.J.
        • Mateer J.R.
        • Ogata M.
        • et al.
        Prospective analysis of a rapid trauma ultrasound examination performed by emergency physicians.
        J Trauma. 1995; 38: 879-885
        • McKenney M.G.
        • Martin L.
        • Lentz K.
        • et al.
        1,000 consecutive ultrasounds for blunt abdominal trauma.
        J Trauma. 1996; 40 ([discussion: 611-602]): 607-610
        • Jarowenko D.G.
        • Hess R.M.
        • Herr M.S.
        • et al.
        Use of ultrasonography in the evaluation of blunt abdominal trauma.
        J Trauma Acute Care Surg. 1989; 29: 1031
        • Gruessner R.
        • Mentges B.
        • Duber C.
        • et al.
        Sonography versus peritoneal lavage in blunt abdominal trauma.
        J Trauma. 1989; 29: 242-244
        • Hoffmann R.
        • Nerlich M.
        • Muggia-Sullam M.
        • et al.
        Blunt abdominal trauma in cases of multiple trauma evaluated by ultrasonography: a prospective analysis of 291 patients.
        J Trauma. 1992; 32: 452-458
        • Epelman M.
        • Daneman A.
        • Navarro O.M.
        • et al.
        Necrotizing enterocolitis: review of state-of-the-art imaging findings with pathologic correlation.
        Radiographics. 2007; 27: 285-305
        • Melniker L.A.
        • Leibner E.
        • McKenney M.G.
        • et al.
        Randomized controlled clinical trial of point-of-care, limited ultrasonography for trauma in the emergency department: the first sonography outcomes assessment program trial.
        Ann Emerg Med. 2006; 48: 227-235
        • Rose J.S.
        • Levitt M.A.
        • Porter J.
        • et al.
        Does the presence of ultrasound really affect computed tomographic scan use? A prospective randomized trial of ultrasound in trauma.
        J Trauma Acute Care Surg. 2001; 51: 545-550
        • Holmes J.F.
        • Kelley K.M.
        • Wootton-Gorges S.L.
        • et al.
        Effect of abdominal ultrasound on clinical care, outcomes, and resource use among children with blunt torso trauma: a randomized clinical trial.
        JAMA. 2017; 317: 2290-2296
        • Dussik K.
        On the possibility of using ultrasound waves as a diagnostic aid.
        Neurol Psychiatr. 1942; 174: 153-168
        • Ben Fadel N.
        • McAleer S.
        Impact of a web-based module on trainees' ability to interpret neonatal cranial ultrasound.
        BMC Med Educ. 2020; 20: 489
        • Ohle R.
        • McIsaac S.M.
        • Woo M.Y.
        • et al.
        Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: a systematic review and meta-analysis.
        J Ultrasound Med. 2015; 34: 1285-1294
        • Robba C.
        • Santori G.
        • Czosnyka M.
        • et al.
        Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis.
        Intensive Care Med. 2018; 44: 1284-1294
        • Koziarz A.
        • Sne N.
        • Kegel F.
        • et al.
        Bedside optic nerve ultrasonography for diagnosing increased intracranial pressure: a systematic review and meta-analysis.
        Ann Intern Med. 2019; 171: 896-905
        • Bhargava V.
        • Tawfik D.
        • Tan Y.J.
        • et al.
        Ultrasonographic optic nerve sheath diameter measurement to detect intracranial hypertension in children with neurological injury: a systematic review.
        Pediatr Crit Care Med. 2020; 21: e858-e868
        • Adams R.J.
        • McKie V.C.
        • Hsu L.
        • et al.
        Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography.
        N Engl J Med. 1998; 339: 5-11
        • O'Brien N.F.
        • Reuter-Rice K.
        • Wainwright M.S.
        • et al.
        Practice recommendations for transcranial Doppler ultrasonography in critically ill children in the pediatric intensive care unit: a multidisciplinary expert consensus statement.
        J Pediatr Intensive Care. 2021; 10: 133-142
        • Blanco P.
        • Abdo-Cuza A.
        Transcranial Doppler ultrasound in neurocritical care.
        J Ultrasound. 2018; 21: 1-16
        • LaRovere K.L.
        • Tasker R.C.
        • Wainwright M.
        • et al.
        Transcranial Doppler ultrasound during critical illness in children: survey of practices in pediatric neurocritical care centers.
        Pediatr Crit Care Med. 2020; 21: 67-74
        • Sousa D.A.
        How the brain learns.
        Corwin Press, Thousand Oaks, CA2016
        • Ten Cate O.
        Nuts and bolts of entrustable professional activities.
        J graduate Med Educ. 2013; 5: 157-158
        • Physicians ACoE.
        Ultrasound guidelines: emergency, point-of-care and clinical ultrasound guidelines in medicine.
        Ann Emerg Med. 2017; 69: e27-e54
      1. Pustavoitau A, Blaivas M, Brown SM, et al. Recommendations for achieving and maintaining competence and credentialing in critical care ultrasound with focused cardiac ultrasound and advanced critical care echocardiography. Documents/Critical% 20care% 20Ultrasound pdf> Accessed Oct 27, 2016.

        • Conlon T.W.
        • Kantor D.B.
        • Su E.R.
        • et al.
        Diagnostic bedside ultrasound program development in pediatric critical care medicine: results of a national survey.
        Pediatr Crit Care Med. 2018; 19: e561-e568